System Identification Toolbox ${ }^{\text {TM }} 7$ Reference

Lennart Ljung

MATLAB SIMULINK ${ }^{\circ}$

How to Contact The MathWorks

www.mathworks.com
comp.soft-sys.matlab
Web
www.mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com
Product enhancement suggestions
bugs@mathworks.com
doc@mathworks.com
service@mathworks.com
info@mathworks.com

Bug reports
Documentation error reports
Order status, license renewals, passcodes
Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)
The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

System Identification Toolbox ${ }^{\text {TM }}$ Reference

© COPYRIGHT 1988-2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through the federal government of the United States. By accepting delivery of the Program or Documentation, the government hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and Documentation by the federal government (or other entity acquiring for or through the federal government) and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is inconsistent in any respect with federal procurement law, the government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for more information.

Revision History

September 2007 Online only
March 2008 Online only
October 2008 Online only
March 2009 Online only
September 2009 Online only
March 2010 Online only

Revised for Version 7.1 (Release 2007b)
Revised for Version 7.2 (Release 2008a)
Revised for Version 7.2.1 (Release 2008b)
Revised for Version 7.3 (Release 2009a)
Revised for Version 7.3.1 (Release 2009b)
Revised for Version 7.4 (Release 2010a)

Function Reference

1

Data Import and Processing . 1-3
Linear Model Identification . 1-5

Nonlinear Black-Box Model Identification 1-8

ODE Parameter Estimation . 1-12

Recursive Model Identification . 1-12

Model Analysis . 1-13

Simulation and Prediction . 1-16

System Identification Tool GUI . 1-17

Functions - Alphabetical List
2

Block Reference
3
Data Import and Processing . 3-2
Linear Model Identification . 3-3

Blocks - Alphabetical List

4

Index

Function Reference

Data Import and Processing (p. 1-3)	Represent, process, analyze, and manipulate data
Linear Model Identification (p. 1-5)	Estimate time response, frequency response, transfer function, input-output polynomial, and state-space models from time and frequency domain data
	Estimate nonlinear ARX and
Nonlinear Black-Box Model	Hammerstein-Wiener models
Identification (p. 1-8)	Estimate parameters of linear and nonlinear ordinary differential or difference equations (grey-box models)
Recursive Model Identification	Recursively estimate input-output linear models, such as AR,
(p. 1-12)	ARX, ARMAX, Box-Jenkins, and
Output-Error models	

Simulation and Prediction (p. 1-16)	Simulate and predict linear and nonlinear model output, and estimate initial states
System Identification Tool GUI $($ p. 1-17)	Start System Identification Toolbox ${ }^{\text {TM }}$ GUI and customize preferences

Data Import and Processing

advice	Analysis and recommendations for data or estimated linear polynomial and state-space models
covf	Estimate covariance functions for time-domain iddata object
delayest	Estimate time delay (dead time) from data
detrend	Subtract offset or trend from data signals
diff	Difference signals in iddata objects Concatenate frequency-domain signals in data objects
fcat	Identify possible feedback data
feedback	Transform iddata object to frequency domain data
fft	Frequencies from frequency response data
fselect	Query properties of data and model objects
getexp	Specific experiments from multiple-experiment data set
getTrend	Data offset and trend information
iddata	Time- or frequency-domain data
idfilt	Filter data using user-defined passbands, general filters, or
Butterworth filters	

ifft	Transform iddata objects from frequency to time domain
isreal	Determine whether model parameters or data values are real
merge (iddata)	Merge data sets into iddata object Reconstruct missing input and output data
misdata	Shift data sequences
nkshift	Level of excitation of input signals pexcit plot
realdata	Plot iddata or model objects Determine whether iddata is based on real-valued signals
resample	Resample time-domain data by decimation or interpolation (requires Signal Processing Toolbox
software)	

Linear Model Identification

ar	Estimate parameters of AR model for scalar time series
armax	Estimate parameters of ARMAX or ARMA model
arx	Estimate parameters of ARX or AR model using least squares
arxdata	ARX parameters from multiple-output models with variance information
arxstruc	Compute and compare loss functions for single-output ARX models
balred	Reduce model order (requires Control System Toolbox ${ }^{\text {TM }}$ product)
bj	Box-Jenkins (BJ) model estimation
c2d	Transform linear model from continuous to discrete time
cra	Estimate impulse response using prewhitened-based correlation analysis
d2c	Transform linear model from discrete to continuous time
delayest	Estimate time delay (dead time) from data
etfe	Estimate empirical transfer functions and periodograms
feedback	Identify possible feedback data
frd	Convert idfrd objects to Control System Toolbox frequency-response LTI model
freqresp	Frequency response data from linear models

get	Query properties of data and model objects
idarx	Multiple-output ARX polynomials, impulse response, or step response model
idfrd	Frequency-response data or model
idgrey	Linear ODE (grey-box model) with known and unknown parameters
idmodel	Superclass for linear models
idpoly	Linear polynomial input-output model
idproc	Linear, low-order, continuous-time transfer function
idss	State-space model
impulse	Plot impulse response with confidence interval
init	Set or randomize initial parameter values
iv4	Estimate ARX model using four-stage instrumental variable method
ivar	Estimate AR model using instrumental variable method
ivstruc	Loss functions for sets of ARX model structures
ivx	Estimate parameters of ARX model using instrumental variable method
merge	with arbitrary instruments Apply Control System Toolbox commands to linear model
Merge estimated models	

n4sid	Estimate state-space models using subspace method
nuderst	Set step size for numerical differentiation
oe	Output-error (OE) model parameter estimation
pem	Estimate model parameters using iterative prediction-error minimization method
pexcit	Level of excitation of input signals
polydata	Parameters from single-input and single-output polynomial model
selstruc	Select model order for single-output ARX models
set	Set properties of data and model objects
setpname	Set mnemonic parameter names for linear black-box model structures
setPolyFormat	Specify format for B and F polynomials of multi-input polynomial model for backward compatibility
setstruc	Set matrix structure for idss model objects
size	Dimensions of data and model objects
spafdr	Estimate frequency response with fixed frequency resolution using spectral analysis
Estimate frequency response and	
spectrum using spectral analysis	
with frequency-dependent resolution	

ss	Convert linear models to Control System Toolbox LTI models
ssdata	State-space matrices from parametric linear model
step	Plot step response with confidence interval
struc	Generate model-order combinations for single-output ARX model estimation
tf	Convert linear models to transfer-function Control System
tidata	Toolbox LTI models Numerator and denominator of transfer function from linear model
timestamp	Return date and time when object was created or last modified
zpk	Convert linear model to Control System Toolbox state-space LTI models
zpkdata	Zeros, poles, and gains of transfer function from linear model

Nonlinear Black-Box Model Identification

addreg
customnet
customreg

Add custom regressors to nonlinear ARX model

Custom nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

Custom regressor for nonlinear ARX models

data2state(idnlarx)	Map past input/output data to current states of nonlinear ARX model
deadzone	Class representing dead-zone
	nonlinearity estimator for
	Hammerstein-Wiener models
evaluate	Value of nonlinearity estimator at given input
findop(idnlarx)	Compute operating point for
findop(idnlhw)	nonlinear ARX model
get	Compute operating point for Hammerstein-Wiener model
getDelayInfo	Query properties of data and model objects
getreg	Get input/output delay information for idnlarx model structure
idnlarx	Regressor expressions and numerical idnlhw
values in nonlinear ARX model	

neuralnet	Class representing neural network object created in Neural Network Toolbox ${ }^{\text {TM }}$ product for estimating nonlinear ARX and Hammerstein-Wiener models
nlarx	Estimate nonlinear ARX model
nlhw	Estimate Hammerstein-Wiener model
operspec(idnlarx)	Construct operating point specification object for idnlarx model
operspec(idnlhw)	Construct operating point specification object for idnlhw model
pem	Estimate model parameters using iterative prediction-error minimization method
poly1d	Class representing single-variable polynomial nonlinear estimator for Hammerstein-Wiener models
polyreg	Powers and products of standard regressors
pwlinear	Class representing piecewise-linear nonlinear estimator for Hammerstein-Wiener models
saturation	Class representing saturation nonlinearity estimator for Hammerstein-Wiener models
set	Set properties of data and model objects
sigmoidnet	Class representing sigmoid network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

treepartition	Class representing binary-tree nonlinearity estimator for nonlinear ARX models
unitgain	Specify absence of nonlinearities for specific input or output channels in
wavenet	Hammerstein-Wiener models
	Class representing wavelet network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models

ODE Parameter Estimation

```
get
getinit
getpar
idgrey
idnlgrey
idnlmodel
init
pem
set
setinit
setpar
```


Recursive Model Identification

rarmax
rarx

Estimate recursively parameters of ARMAX or ARMA models

Estimate parameters of ARX or AR models recursively

```
rbj
roe
rpem
rplr
segment
```


Model Analysis

advice	Analysis and recommendations for data or estimated linear polynomial and state-space models
aic	Akaike Information Criterion for estimated model
arxdata	ARX parameters from multiple-output models with variance information
balred	Reduce model order (requires Control System Toolbox product)
bode	Compute and plot frequency response magnitude and phase for logarithmic frequencies Compare model output and measured output
	compare

$\left.\begin{array}{ll}\text { ffplot } & \begin{array}{l}\text { Compute and plot frequency } \\ \text { response magnitude and phase for } \\ \text { linear frequencies }\end{array} \\ \text { fpe } & \begin{array}{l}\text { Akaike Final Prediction Error for } \\ \text { estimated model }\end{array} \\ \text { freqresp } & \begin{array}{l}\text { Frequency response data from linear } \\ \text { models }\end{array} \\ \text { fselect } & \begin{array}{l}\text { Frequencies from frequency response } \\ \text { data }\end{array} \\ \text { impulse } & \begin{array}{l}\text { Plot impulse response with } \\ \text { confidence interval }\end{array} \\ \text { isreal } & \begin{array}{l}\text { Determine whether model } \\ \text { parameters or data values are } \\ \text { real }\end{array} \\ \text { ivstruc } & \begin{array}{l}\text { Loss functions for sets of ARX model } \\ \text { structures }\end{array} \\ \text { noisecnv } & \begin{array}{l}\text { Transform idmodel object with noise } \\ \text { channels to model with measured } \\ \text { channels only }\end{array} \\ \text { nyquist } & \begin{array}{l}\text { Plot Nyquist curve of frequency } \\ \text { response with confidence interval }\end{array} \\ \text { pe } & \begin{array}{l}\text { Prediction errors associated with } \\ \text { model and data set }\end{array} \\ \text { plot } & \begin{array}{l}\text { Plot iddata or model objects } \\ \text { parameters from single-input and }\end{array} \\ \text { predata } & \begin{array}{l}\text { Pingle-output polynomial model }\end{array} \\ \text { predict (idnlgrey) } & \begin{array}{l}\text { Predict output } k \text { steps ahead } \\ \text { Predict output } k \text { steps ahead for } \\ \text { nonlinear ARX model }\end{array} \\ \text { predict(idnlarx) } & \begin{array}{l}\text { Predict output } k \text { steps ahead for } \\ \text { nonlinear ODE model }\end{array} \\ \text { Predict output } k \text { steps ahead for } \\ \text { Hammerstein-Wiener model }\end{array}\right\}$

present	Display model information, including estimated uncertainty
pzmap	Plot zeros and poles with confidence interval
resid	Compute and test model residuals (prediction errors) Select model order for single-output ARX models
selstruc	Simulate linear models with confidence interval
sim	Simulate nonlinear ARX model
sim(idnlarx)	Simulate nonlinear ODE model
sim(idnlgrey)	Simulate Hammerstein-Wiener model
sim(idnlhw)	Simulate models with uncertainty using Monte Carlo method
simsd	State-space matrices from parametric linear model
ssdata	Plot step response with confidence interval
step	Numerator and denominator of transfer function from linear model
tfdata	Plot model characteristics using
view	Control System Toolbox LTI Viewer GUI Zeros, poles, and gains of transfer function from linear model
zpkdata	

Simulation and Prediction

findstates(idmodel)	Estimate initial states of linear model from data
findstates(idnlarx)	Estimate initial states of nonlinear ARX model from data
findstates(idnlgrey)	Estimate initial states of nonlinear grey-box model from data Estimate initial states of nonlinear
findstates(idnlhw)	Hammerstein-Wiener model from data
predict	Predict output k steps ahead
predict(idnlarx)	Predict output k steps ahead for nonlinear ARX model
predict(idnlgrey)	Predict output k steps ahead for nonlinear ODE model
predict(idnlhw)	Predict output k steps ahead for Hammerstein-Wiener model
retrend	Add offsets or trends to data signals sim
Simulate linear models with confidence interval	
sim(idnlarx)	Simulate nonlinear ARX model sim(idnlgrey) sim(idnlhw)
Simulate nonlinear ODE model	

System Identification Tool GUI

ident
midprefs
Open System Identification Tool GUI
Set folder for storing idprefs.mat containing GUI startup information

Functions - Alphabetical
List

Purpose Add custom regressors to nonlinear ARX model

```
Syntax m= addreg(model,regressors)
m = addreg(model,regressors,output)
```

Description $\quad m=\operatorname{addreg}$ (model, regressors) adds custom regressors to a nonlinear ARX model by appending the CustomRegressors model property. model and m are idnalrx objects. For single-output models, regressors is an object array of regressors you create using customreg or polyreg, or a cell array of string expressions. For multiple-output models, regressors is 1-by-ny cell array of customreg objects or 1-by-ny cell array of cell arrays of string expressions. addreg adds each element of the ny cells to the corresponding model output channel. If regressors is a single regressor, addreg adds this regressor to all output channels.
$m=$ addreg(model,regressors,output) adds regressors regressors to specific output channels output of a multiple-output model. output is a scalar integer or vector of integers, where each integer is the index of a model output channel. Specify several pairs of regressors and output values to add different regressor variables to the corresponding output channels.

Examples

Add regressors to a nonlinear ARX model as a cell array of strings:

```
% Create nonlinear ARX model with standard regressors:
    m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
% Create model with additional custom regressors:
    m2 = addreg(m1,{'y1(t-2)^2';'u1(t)*y1(t-7)'})
% List all standard and custom regressors of m2:
    getreg(m2)
```

Add regressors to a nonlinear ARX model as customreg objects:

```
\% Create nonlinear ARX model with standard regressors:
    m1 = idnlarx([4 2 1],'wavenet','nlr',[1:3]);
\% Create a model based on m 1 with custom regressors:
```

```
r1 = customreg(@(x)x^2, {'y1'}, 2)
r2 = customreg(@(x,y)x*y, {'u1','y1'}, [0 7])
m2 = addreg(m1,[r1 r2]);
```

See Also
customreg | getreg | nlarx | polyreg
How To . "Identifying Nonlinear ARX Models"

Purpose	Analysis and recommendations for data or estimated linear polynomial and state-space models
Syntax	advice(model) advice(data)
Inputs	model Name of the idarx, idgrey, idpoly, idproc, or idss model object. These model objects belong to the idmodel abstract class, representing linear polynomial and state-space models. data
Name of the iddata object.	

Description

advice (model) displays the following information about the estimated model in the MATLAB ${ }^{\circledR}$ Command Window:

- Does the model capture essential dynamics of the system and the disturbance characteristics?
- Is the model order higher than necessary?
- Is there potential output feedback in the validation data?
- Would a nonlinear ARX model perform better than a linear ARX model?
advice(data) displays the following information about the data in the MATLAB Command Window:
- What are the excitation levels of the signals and how does this affects the model orders? See also pexcit.
- Does it make sense to remove constant offsets and linear trends from the data? See also detrend.
- Is there an indication of output feedback in the data? See also feedback.

See Also
detrend
feedback
iddata
pexcit

Purpose Akaike Information Criterion for estimated model

```
Syntax am = aic(model)
am = aic(model1,model2,...)
```


Remarks

model
Name of an idarx, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.
am = aic(model) returns a scalar value of the Akaike's Information Criterion (AIC) for the estimated model.
am = aic (model1, model2, ...) returns a row vector containing AIC values for the estimated models model1, model2,....

Akaike's Information Criterion (AIC) provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest AIC.

Note If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Information Criterion (AIC) is defined by the following equation:

$$
A I C=\log V+\frac{2 d}{N}
$$

where V is the loss function, d is the number of estimated parameters, and N is the number of values in the estimation data set.

The loss function V is defined by the following equation:

$$
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
$$

where θ_{N} represents the estimated parameters.
For $d \ll N$:

$$
A I C=\log \left(V\left(1+\frac{2 d}{N}\right)\right)
$$

Note $A I C$ is approximately equal to $\log (F P E)$.

AIC is formally defined as the negative log-likelihood function Λ, evaluated at the estimated parameters, plus the number of estimated parameters. You can derive AIC from this definition, as follows:

If the disturbance source is Gaussian with the covariance matrix Λ, the logarithm of the likelihood function is

$$
L(\theta, \Lambda)=-\frac{1}{2} \sum_{1}^{N} \varepsilon(t, \theta)^{T} \Lambda^{-1} \varepsilon(t, \theta)-\frac{N}{2} \log (\operatorname{det} \Lambda)+\text { const }
$$

Maximizing this analytically with respect to Λ, and then maximizing the result with respect to θ, gives

$$
L(\theta, \Lambda)=\text { const }+\frac{N p}{2}+\frac{N}{2} \log (V)
$$

where p is the number of outputs.

References Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. See sections about the statistical framework for parameter estimation and maximum likelihood method and comparing model structures.

See Also EstimationInfo fpe

Algorithm Properties

Purpose Algorithm properties affecting estimation process for linear models
Syntax
Description
idprops idmodel algorithm Model.algorithm.PropertyName='PropertyValue'
Algorithm is a property of the idmodel class that specifies the estimation algorithm. The idmodel subclasses are used to define various linear models, including idarx, idss, idpoly, idproc, and idgrey. These models inherit the idmodel Algorithm property.

Note For a description of nonlinear model Algorithm property, see the corresponding nonlinear model reference page.

Property names are not case sensitive. When you type a property name, you only need to enter enough characters to uniquely identify the property. The Algorithm fields can be accessed and modified as for any structure using dot syntax. For example, you can access the SearchMethod field by typing Model.Algorithm. SearchMethod.

Note You can use the get function or dot notation to fetch fields of Algorithm as if they were the properties of the model itself. Similarly you can use set or dot notation to set a particular field. This shortcut access is available for the fields of Algorithm only (not for deeper level struct fields such as Search or Threshold options). For example:

```
method = Model.SearchMethod;
Model.MaxIter = 100;
```

is equivalent to

```
get(Model, 'SearchMethod')
set(Model, 'maxiter', 100);
```

When you create a new model by refining an existing model m, the algorithm properties of m are inherited by the new model.

Note You can estimate a model with specific algorithm settings and define a structure variable to store the algorithm values. For example:

```
model = n4sid(data,order)
myalg = model.Algorithm;
myalg.Focus='Simulation';
m = pem(data,model,'alg',myalg)
```

You can also specify the algorithm properties (except advanced properties) as property-value pairs when creating the linear model (using idpoly, idss, etc.) or when estimating them (using pem, n4sid, armax, oe etc.).

Algorithm Properties

- Criterion: Specifies criterion used during minimization. Criterion can have the following values:
- 'Det': Minimize $\operatorname{det}\left(E^{\prime *} E\right)$, where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default.
- 'Trace ': Minimize the trace of the weighted prediction error matrix trace ($E^{\prime} * E^{*} W$), where E is the matrix of prediction errors, with one column for each output, and W is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace ($\mathrm{E}^{\prime *} \mathrm{E}$), or the traditional least-sum-of-squared-errors criterion. You can

Algorithm Properties

specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property.

Note The difference between the two criteria is meaningful in multiple-output cases only. In single-output models, the two criteria are equivalent. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of squares of prediction errors. The Det criterion can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. When using the Trace criterion, you must specify the weighting using the Weighting property.

If you want to achieve better accuracy for a particular channel in multiple-input multiple-output models, you should use Trace with weighting that favors that channel. Otherwise it is natural to use the Det criterion. When using Det, you can check cond(model.NoiseVariance) after estimation. If the matrix is ill-conditioned, it may be more robust to use the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.

- Focus: Defines how the errors e between the measured and the modeled outputs are weighed at specific frequencies during the minimization of the following loss function:

$$
V=\sum_{i} \lambda_{i} e_{i}^{2}
$$

Algorithm Properties

Higher weighting at specific frequencies emphasizes the requirement for a good fit at these frequencies. Focus can have the following values:

- 'Prediction': (Default) Automatically calculates the weighting function as a product of the input spectrum and the inverse of the noise model. This minimizes the one-step-ahead prediction, which typically favors fitting small time intervals (higher frequency range). From a statistical-variance point of view, this is the optimal weighting function. However, this method neglects the approximation aspects (bias) of the fit. Might not result in a stable model. Use 'Stability' when you want to ensure a stable model.
- 'Simulation': Estimates the model using the frequency weighting of the transfer function that is given by the input spectrum. Typically, this method favors the frequency range where the input spectrum has the most power. In other words, the resulting model will produce good simulations for inputs that have the same spectra as used for estimation. For models that have no disturbance model, there is no difference between 'Simulation' and 'Prediction'. In this case, $y=G u+H e$ with $H=1$, which is equivalent to $\mathrm{A}=\mathrm{C}=\mathrm{D}=1$ for idpoly models and $\mathrm{K}=0$ for idss models.

For models that have a disturbance model, G is first estimated with $H=1$, and then H is estimated using a prediction-error method with a fixed estimated transfer function \hat{G}. This guarantees a stable transfer function G.

- 'Stability': This weighting is the same as for 'Prediction', but the model is forced to be stable. Use only when you know the system is stable. In some cases, forcing the model to be stable can result in a bad model.
- Enter a row vector or a matrix containing frequency values that define desired passbands. For example:

```
[wl,wh]
[w1l,w1h;w2l,w2h;w3l,w3h;...]
```


Algorithm Properties

where $w l$ and wh represent upper and lower limits of a passband. For a matrix with several rows defining frequency passbands, the algorithm uses union of frequency ranges to define the estimation passband.

- Enter any SISO linear filter in any of the following ways:

A single-input-single-output (SISO) idmodel object.
An ss, tf, or zpk model from the Control System Toolbox product.
Using the format $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}$, which specifies the state-space matrices of the filter.

Using the format \{numerator, denominator\}, which specifies the numerator and denominator of the filter transfer function
This calculates the weighting function as a product of the filter and the input spectrum to estimate the transfer function from input to output, G. To obtain a good model fit for a specific frequency range, you must choose the filter with a passband in this range. After estimating G, the algorithm computes the disturbance model using a prediction-error method and keeping the estimated transfer function fixed (similar to the 'Simulation' case). For a model that has no disturbance model, the estimation result is the same if you first prefilter the data using idfilt.

- For frequency-domain data only, enter a column vector of weights for 'Focus'. This vector must have the same size as length of the frequency vector of the data set, Data. Frequency. Each input and output response in the data is multiplied by the corresponding weight at that frequency.
- Maxsize: A positive integer, specified such that the input-output data is split into segments where each contains fewer than MaxSize elements. Setting MaxSize can improve computational performance. The default value of MaxSize is 'Auto', which uses the file idmsize to set the value. You can edit this file to optimize computational speed on a particular computer. MaxSize does not affect the numerical properties of the estimate except when you use InitialState $=$ 'backcast' for frequency-domain data. In this case, the frequency
ranges where backcasting takes place might depend on MaxSize and affects estimates.
- FixedParameter: Vector of integers containing the indices of parameters that are not estimated and remain fixed at nominal or initial values. Parameter indices refer to their position in the list, stored in the property 'ParameterVector'. You can also specify parameter names as values from the property 'PName'. To specify fixed parameters using parameter names, enter Fixedparameter as a cell array of strings. For example, to fix parameters with names 'a' and 'b', type m.FixedParameter = \{'a','b', 'c'\}. Strings can contain wildcards, such as ' ${ }^{*}$ ' to specify the automatic completion of a string, or '?' to represent an arbitrary character. For example, to fix three parameters in a disturbance model that start with ' k ', such as 'k1', 'k2','k3', use FixedParameter = \{'k*'\}. For structured state-space models, you can fix and free parameters by specifying structure matrices, such as As and Bs (see idss).

Note By default, the property 'PName' is empty. Use setpname to assign default parameter names. For example, $m=$ setpname (m).

- Weighting: Positive semi-definite symmetric matrix W to use as weighting for minimization of the trace criterion $\operatorname{trace}\left(E^{\prime} * E^{*} W\right.$). Weighting can be used to specify relative importance of outputs in multiple-input multiple-output models (or reliability of corresponding data) by specifying W as a diagonal matrix of non-negative values. Weighting is not useful in single-input single-output models. By default, Weighting is the identity matrix of size equal to the number of model outputs, assigning equal importance to each output during estimation.
- Display: Specifies what information displays in the MATLAB Command Window about the iterative search during estimation.
- 'Off': Displays no information.
- 'On': Displays the loss-function values for each iteration.

Algorithm Properties

- 'Full': Displays the same information as 'On' and also include the current parameter values and the search direction (except when the Advanced SSParameterization model property is set to 'Free' for idss models and the list of parameters can change between iterations).
- LimitError: Specifies when to adjust the weight of large errors from quadratic to linear. Default value is 0. Errors larger than LimitError times the estimated standard deviation have a linear weight in the criteria. The standard deviation is estimated robustly as the median of the absolute deviations from the median and divided by 0.7. (See the section about choosing a robust norm in [2].) LimitError $=0$ disables the robustification and leads to a purely quadratic criterion. When estimating with frequency-domain data, LimitError is set to zero.

Note You can estimate the model with the default value of LimitError (zero) and plot the prediction errors using pe(data.model). If the resulting plot shows occasional large values, repeat the estimation with model.Algorithm.LimitError set to a value between 1 and 2 .

- MaxIter: Specifies the maximum number of iterations during loss-function minimization. The iterations stop when MaxIter is reached or another stopping criterion is satisfied, such as the Tolerance. The default value of MaxIter is 20. Setting MaxIter $=0$ returns the result of the startup procedure. Use EstimationInfo. Iterations to get the actual number of iterations during an estimation.
- Tolerance: Specifies the minimum percentage difference (divided by 100) between the current value of the loss function and its expected improvement after the next iteration: When the percentage of expected improvement is less than Tolerance, the iterations are stopped. Default value is 0.01 . The estimate of the expected

Algorithm Properties

loss-function improvement at the next iteration is made based on the Gauss-Newton vector computed for the current parameter value.

- SearchMethod: The search method used for iterative parameter estimation. It can take one of the following values:
- 'gn': The subspace Gauss-Newton direction. Singular values of the Jacobian matrix less than GnPinvConst*eps*max(size(J))*norm(J) are discarded when computing the search direction, where J is the Jacobian matrix. The Hessian matrix is approximated by $J^{\top} J$. If there is no improvement along this direction, the gradient direction is also tried.
- 'gna': An adaptive version of subspace Gauss-Newton approach, suggested by Wills and Ninness (IFAC World congress, Prague 2005). Eigenvalues less than gamma*max(sv) of the Hessian are neglected, where sv are the singular values of the Hessian. The Gauss-Newton direction is computed in the remaining subspace. gamma has the initial value InitGnaTol (see below) and is increased by the factor LmStep each time the search fails to find a lower value of the criterion in less than 5 bisections. It is decreased by the factor $2 *$ LmStep each time a search is successful without any bisections.
- 'lm': Uses the Levenberg-Marquardt method. This means that the next parameter value is - pinv $(H+d * I) * g r a d$ from the previous one, where H is the Hessian, I is the identity matrix, and grad is the gradient. d is a number that is increased until a lower value of the criterion is found.
- 'Auto': A choice among the above is made in the algorithm. This is the default choice.
- 'lsqnonlin': Uses lsqnonlin optimizer from Optimization Toolbox ${ }^{\mathrm{TM}}$ software. You must have Optimization Toolbox installed to use this option. This search method can only handle the Trace criterion.

Algorithm Properties

- Advanced: Structure that specifies advanced algorithm options and has the following fields:
- Search: Uses the following fields to specify options for the iterative search:

1 GnPinvConst: Must be a positive real value. Specifies that singular values of the Jacobian that are smaller than GnPinvConst*max(size(J)*norm(J)*eps are discarded when computing the search direction using the 'gn' method. Default value is 1 e 4 .

2 InitGnaTol: The initial value of gamma in the gna search algorithm. See SearchMethod for description of gna. Default is 10^-4.

3 LmStep: The size of the Levenberg-Marquardt step. The next value of the search-direction length d in the Levenberg-Marquardt method is LmStep times the previous one. Default is 2.

4 StepReduction: For search directions other than the Levenberg-Marquardt direction, the step is reduced by the factor StepReduction after each iteration. Default is 2.

5 MaxBisection: The maximum number of bisections used by the line search along the search direction. Default is 25.
6 LmStartValue: The starting value of search-direction length d in the Levenberg-Marquardt method. Default is 0.001 .
7 RelImprovement: The iterations are stopped if the relative improvement of the criterion is less than RelImprovement. Default is RelImprovement $=0$. This property is different from Tolerance in that it uses the actual improvement of the loss function, as opposed to the expected improvement.

- Threshold: Contains fields with thresholds for several tests:

1 Sstability: Specifies the location of the rightmost pole to test the stability of continuous-time models. A model is considered stable when its rightmost pole is to the left of Sstability. Default is 0 .

Algorithm Properties

2 Zstability: Specifies the maximum distance of all poles from the origin to test stability of discrete-time models. A model is considered stable if all poles are within the distance Zstability from the origin. Default is $1+$ sqrt (eps).

- AutoInitialState: Specifies when to automatically estimate the initial state. When InitialState = 'Auto', the initial state is estimated when the ratio of the prediction-error norm with a zero initial state to the norm with an estimated initial state exceeds AutoInitialState. Default is 1.05 .

Properties Relevant to Estimation of n4sid, State-Space (idss) Models

Note These properties apply to n 4 sid. Since pem commonly uses n4sid to initialize a model for iterative estimation, these properties affect the results of pem too.

- N4Weight: Calculates the weighting matrices used in the singular-value decomposition step of the algorithm and has three possible values:
- 'Auto': (Default) Automatically chooses between 'MOESP' and 'CVA'.
- 'MOESP': Uses the MOESP algorithm by Verhaegen.
- 'CVA': Uses the canonical variable algorithm by Larimore.

For more information about setting this property, see the n4sid reference page.

- N4Horizon: Determines the forward and backward prediction horizons used by the algorithm. Enter a row vector with three elements: N4Horizon=[r sy su], where r is the maximum forward prediction horizon; that is, the algorithm uses up to r step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs used for predictions. For an exact definition of these integers, see the section about subspace methods in [2], where they

Algorithm Properties

are called $r, s 1$, and $s 2$. These numbers can have a substantial influence on the quality of the resulting model and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that the algorithm tries each row of 'N4Horizon' and selects the value that gives the best (prediction) fit to the data. Choosing the best row is not available when you also specify to select the best model order. When you specify one column in 'N4Horizon', the interpretation is $r=s y=s u$. The default choice is 'N4Horizon' = 'Auto', which uses an Akaike Information Criterion (AIC) for the selection of sy and su.

Note For algorithm properties of nonlinear models, see the reference pages for idnlarx, idnlhw, and idnlgrey.

References [1] Dennis, J.E., Jr., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice Hall, Englewood Cliffs, N.J., 1983. See the chapter about iterative minimization.

[2] Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. See the chapter about computing the estimate.

See Also

```
armax
bj
EstimationInfo
idpoly
idss
n4sid
oe
pem
```

Purpose Estimate parameters of AR model for scalar time series

```
Syntax \(\quad m=\operatorname{ar}(y, n)\)
[m,refl] = ar(y,n,approach,window)
[m,refl] = ar(y,n,approach,window,'P1',V1,...,'PN',VN)
```


Arguments

y
iddata object that contains the time-series data (one output channel).
n
Scalar that specifies the order of the model you want to estimate (the number of A parameters in the AR model).
approach
Lets you choose the algorithm for computing the least squares AR model from the following options:

- 'burg': Burg's lattice-based method. Solves the lattice filter equations using the harmonic mean of forward and backward squared prediction errors.
- 'fb': (Default) Forward-backward approach. Minimizes the sum of a least- squares criterion for a forward model, and the analogous criterion for a time-reversed model.
- 'gl': Geometric lattice approach. Similar to Burg's method, but uses the geometric mean instead of the harmonic mean during minimization.
- 'ls': Least-squares approach. Minimizes the standard sum of squared forward-prediction errors.
- 'yw': Yule-Walker approach. Solves the Yule-Walker equations, formed from sample covariances.
window
Lets you specify how to use information about the data outside the measured time interval (past and future values). The following windowing options are available:
- 'now': (Default) No windowing. This value is the default except when the approach argument is 'yw'. Only measured data is used to form regression vectors. The summation in the criteria starts at the sample index equal to $n+1$.
- 'pow': Postwindowing. Missing end values are replaced with zeros and the summation is extended to time $\mathrm{N}+\mathrm{n}$ (N is the number of observations).
- 'ppw': Pre- and postwindowing. Used in the Yule-Walker approach.
- 'prw': Prewindowing. Missing past values are replaced with zeros so that the summation in the criteria can start at time equal to zero.
'P1', V1, ...,'PN', VN
Pairs of property names and property values can include any of the following.

Property Name	Property Value	Description
'Covariance'	- 'None'	Specifies
	Suppresses the calculation of talculation of the covariance uncertainties	
	matrix.	in parameter estimates.
	[]	
	Empty.	
	Square matrix containing covariance values of size equal to the	
	length of the	
	parameter vector	

Property Name	Property Value	Description
'MaxSize'	Integer	See Algorithm Properties for the description.
'Ts '	Real positive number	Sets the sampling time and overrides the sampling time of y.

Description

Remarks

The AR model structure is given by the following equation:

$$
A(q) y(t)=e(t)
$$

AR model parameters are estimated using variants of the least-squares method. The following table summarizes the common names for methods with a specific combination of approach and window argument values.

Method	Approach and Windowing
Modified Covariance Method	(Default) Forward-backward approach and no windowing.
Correlation Method	Yule-Walker approach, which corresponds to least squares plus pre- and postwindowing.
Covariance Method	Least squares approach with no windowing. arx uses this routine.

Examples

References

Given a sinusoidal signal with noise, compare the spectral estimates of Burg's method with those found from the forward-backward approach and no-windowing method on a Bode plot.

```
y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);
mb = ar(y,4,'burg');
mfb = ar(y,4);
bode(mb,mfb)
```

Marple, Jr., S.L., Digital Spectral Analysis with Applications, Prentice Hall, Englewood Cliffs, 1987, Chapter 8.

See Also

```
Algorithm Properties
arx
EstimationInfo
etfe
idpoly
ivar
pem
```

ar
spa
step
Purpose Estimate parameters of ARMAX or ARMA model
Syntax

m = armax (data,orders)
m = armax(data,orders,'P1',V1,...,'PN',VN)
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments
 data

iddata object that contains the input-output data.
orders
Vector of integers, specified using the format

```
orders = [na nb nc nk]
```

For multiple-input systems, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input.
When data is a time series, which has no input and one output, then

```
orders = [na nc]
```

Tip When refining an estimated model mi, set the model orders as follows:

```
orders = mi
```

```
'na',na,'nb',nb,'nc',nc,'nk',nk
    'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
    delay. na, nb, nc, and nk are the corresponding integer values.
'P1',V1,...,'PN',VN
    Pairs of property names and property values can include any of
    the following idmodel properties:
```

```
'Focus','InitialState','Display','MaxIter','Tolerance',
'LimitError', and 'FixedParameter'.
```

See Algorithm Properties, idpoly, and idmodel for more information.

Description

Remarks

Note armax only supports time-domain data with single or multiple inputs and single output. For frequency-domain data, use oe. For the multiple-output case, use ARX or a state-space model (see n4sid and pem).
$m=$ armax (data,orders) returns an idpoly model m with estimated parameters and covariances (parameter uncertainties). Estimates the parameters using the prediction-error method and specified orders.
m = armax(data,orders, 'P1', V1, ...,'PN',VN) returns an idpoly model m . Use additional property-value pairs to specify the estimation algorithm properties.
m = armax(data,'na',na,'nb',nb,'nc',nc,'nk',nk) returns an idpoly model m with orders and delays specified as parameter-value pairs.

The ARMAX model structure is

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n_{a}} y\left(t-n_{a}\right)= \\
& b_{1} u\left(t-n_{k}\right)+\ldots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right)+ \\
& \quad c_{1} e(t-1)+\ldots+c_{n_{c}} e\left(t-n_{c}\right)+e(t)
\end{aligned}
$$

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+C(q) e(t)
$$

where

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{c} - Number of C coefficients.
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system. For discrete systems with no dead time, there is a minimum 1 -sample delay because the output depends on the previous input and $n_{k}=1$.
- $y(t-1) \ldots y\left(t-n_{a}\right)$ - Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)$ - White-noise disturbance value.

The parameters na, nb, and nc are the orders of the ARMAX model, and nk is the delay. q is the delay operator. Specifically,

$$
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1} \\
& C(q)=1+c_{1} q^{-1}+\ldots+c_{n_{c}} q^{-n_{c}}
\end{aligned}
$$

If data is a time series, which has no input channels and one output channel, then armax calculates an ARMA model for the time series

$$
A(q) y(t)=e(t)
$$

In this case

```
orders = [na nc]
```


Algorithm

References

An iterative search algorithm with the properties 'SearchMethod', 'MaxIter', 'Tolerance', and 'Advanced' minimizes a robustified quadratic prediction error criterion. The iterations are terminated either when MaxIter is reached, or when the expected improvement is less than Tolerance, or when a lower value of the criterion cannot be found. You can get information about the search criteria using m.EstimationInfo.

When you do not specify initial parameter values for the iterative search in orders, they are constructed in a special four-stage LS-IV algorithm.

The cutoff value for the robustification is based on the property LimitError and on the estimated standard deviation of the residuals from the initial parameter estimate. It is not recalculated during the minimization.

To ensure that only models corresponding to stable predictors are tested, the algorithm performs a stability test of the predictor. Generally, both $C(q)$ and $F(q)$ (if applicable) must have all zeros inside the unit circle.

Minimization information is displayed on the screen when the property 'Display' is 'On' or 'Full'. With 'Display' ='Full', both the current and the previous parameter estimates are displayed in column-vector form, listing parameters in alphabetical order. Also, the values of the criterion function are given and the Gauss-Newton vector and its norm are also displayed. With 'Display' = 'On' only the criterion values are displayed.

Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999. See chapter about computing the estimate.

See Also
Algorithm Properties
EstimationInfo
idpoly
pem

Purpose

Estimate parameters of ARX or AR model using least squares

Syntax

m = arx(data,orders)
m = arx(data,orders,'P1',V1,...,'PN',VN)
m = arx(data,'na',na,'nb',nb,'nc',nc,'nk',nk)

Arguments

data
An iddata object, an frd object, or an idfrd frequency-response-data object.
orders
Vector of integers, specified using the format

```
orders = [na nb nk]
```

For multiple-input systems, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input.

When data is a time series, which has no input and one output, then

```
orders = [na]
```

Note When refining an estimated model mi, set the model orders as follows:

```
orders = mi
```

```
'na',na,'nb',nb,'nc',nc,'nk',nk
    'na', 'nb', and 'nc' are orders of the ARMAX model. nk is the
    delay. na, nb, nc, and nk are the corresponding integer values.
```


'P1',V1,...,'PN',VN

Pairs of property names and property values can include any of the following idmodel properties:
'Focus', 'InitialState', 'Display', 'MaxIter', 'Tolerance', 'LimitError', and 'FixedParameter'.

See Algorithm Properties, idpoly, and idmodel for more information.

Description

Note arx does not support multiple-output continuous-time models. Use state-space model structure instead. When the true noise term
$e(t-1) \ldots e\left(t-n_{c}\right)$ in the ARX model structure is not white noise and na is nonzero, the model estimate is incorrect. In this case, use armax, bj, iv4, or oe.
$\mathrm{m}=\operatorname{arx}($ data,orders) returns a model m as an idpoly or idarx object with estimated parameters and covariances (parameter uncertainties). For single-output data, the model is an idpoly object. For multiple-output data, the model is an idarx object. Uses the least-squares method and specified orders.
m = arx(data,orders,'P1',V1,...,'PN',VN) returns a model m. Use additional property-value pairs to specify the estimation algorithm properties.
$m=\operatorname{arx}(d a t a, ' n a ', n a, ' n b ', n b, ' n c ', n c, ' n k ', n k)$ returns a model m with orders and delays specified as parameter-value pairs.

Remarks
 arx estimates the parameters of the ARX model structure:

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
$$

The parameters na and nb are the orders of the ARX model, and nk is the delay.

- $y(t)$ - Output at time t.
- n_{a} - Number of poles.
- n_{b} - Number of zeroes plus 1 .
- n_{k} - Number of input samples that occur before the input affects the output, also called the dead time in the system. For discrete systems with no dead time, there is a minimum 1 -sample delay because the output depends on the previous input and $n_{k}=1$.
- $y(t-1) \ldots y\left(t-n_{a}\right)$ - Previous outputs on which the current output depends.
- $u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)$ - Previous and delayed inputs on which the current output depends.
- $e(t-1) \ldots e\left(t-n_{c}\right)$ - White-noise disturbance value.

A more compact way to write the difference equation is

$$
A(q) y(t)=B(q) u\left(t-n_{k}\right)+e(t)
$$

q is the delay operator. Specifically,

$$
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\ldots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n_{b}} q^{-n_{b}+1}
\end{aligned}
$$

Time Series Models

For time-series data that contains no inputs, one output and orders = na, the model has AR structure of order na.

The AR model structure is

$$
A(q) y(t)=e(t)
$$

Multiple Inputs and Single-Output Models

For multiple-input systems, nb and nk are row vectors where the ith element corresponds to the order and delay associated with the ith input.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

Multi-Output Models

For models with multiple inputs and multiple outputs, na, nb, and nk contain one row for each output signal.

In the multiple-output case, arx minimizes the trace of the prediction error covariance matrix, or the norm

$$
\sum_{t=1}^{N} e^{T}(t) e(t)
$$

To transform this to an arbitrary quadratic norm using a weighting matrix Lambda

$$
\sum_{t=1}^{N} e^{T}(t) \Lambda^{-1} e(t)
$$

use the syntax

```
m = arx(data,orders,'NoiseVariance', Lambda)
```

You can use arx to refine an existing model m_initial as an argument.
m = arx(data,m_initial)

The new model m uses the orders and the weighting matrix for the prediction errors from m_initial. You can further modify m_initial by adding a list of property name and value pairs as arguments. This is especially useful when some parameters must be fixed using 'FixedParameter' property.

Continuous-Time Models

For models with one output, continuous-time models can be estimated from continuous-time frequency-domain data. In this case, na is the number of estimated denominator coefficients and nb is number of estimated numerator coefficients.

Note For continuous-time models, omit the delay parameter nk because it has no meaning in this case. Because estimating continuous-time ARX models often produces bias, you might get better results by using the oe method.

For example, when na $=4$, $n b=2$, the model structure is:

$$
G(s)=\frac{b_{1} s+b_{2}}{s^{4}+a_{1} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}}
$$

Tip When using continuous-time data, limit the fit to a smaller frequency range using the 'Focus ' idmodel property:

```
m = arx(datac,[na nb],'focus',[0 wh])
```


Estimating Initial Conditions

For time-domain data, the signals are shifted such that unmeasured signals are never required in the predictors. Therefore, there is no need to estimate initial conditions.

For frequency-domain data, it might be necessary to adjust the data by initial conditions that support circular convolution.
You can set the property ' InitialState' to one of the following values:

- 'zero' - No adjustment.
- 'estimate' - Perform adjustment to the data by initial conditions that support circular convolution.
- 'auto' - Automatically choose between 'zero' and 'estimate' based on the data.

See Algorithm Properties for more information on model properties.

Algorithm

Examples

See Also

How To

QR factorization solves the overdetermined set of linear equations that constitutes the least-squares estimation problem.
The regression matrix is formed so that only measured quantities are used (no fill-out with zeros). When the regression matrix is larger than MaxSize, data is segmented and QR factorization is performed iteratively on these data segments.

This example generates input data based on a specified ARX model, and then uses this data to estimate an ARX model.

```
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
u = iddata([],idinput(300,'rbs'));
e = iddata([],randn(300,1));
y = sim(mO, [u e]);
z = [y,u];
m = arx(z,[2 2 1]);
```

Algorithm Properties | EstimationInfo | ar | idarx | idpoly | iv4 | ivar | ivx | pem

- "Using Linear Model for Nonlinear ARX Estimation"

arxdata

Purpose

Syntax

[A,B] = arxdata(m)
[A,B,dA,dB] = arxdata(m)

Arguments

Description

ARX parameters from multiple-output models with variance information
m
An idarx model object.
Also accepts single-output idpoly models with an underlying ARX structure with orders $n c=n d=n f=0$.
$[A, B]=\operatorname{arxdata}(\mathrm{m})$ returns A and B as 3-D arrays.
Suppose $n y$ is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.

A is an ny-by-ny-by-(na+1) array such that

$$
\begin{aligned}
& A(:,:, k+1)=A k \\
& A(:,:, 1)=\operatorname{eye}(n y)
\end{aligned}
$$

where $k=0,1, \ldots$, na.
B is an ny-by-nu-by-(nb+1) array with

$$
B(:,:, k+1)=B k
$$

$A(0)$ is always the identity matrix. The leading entries in B equal to zero, which means there are no delays in the model.

Note For a time series, B = [].
$[A, B, d A, d B]=\operatorname{arxdata}(m)$ returns A and B matrices, and $d A$ and $d B$ as the estimated standard deviations of A and B, respectively.

Remarks

A and B are 2-D or 3-D arrays and are returned in the standard multivariable ARX format (see idarx), describing the model.

$$
\begin{array}{r}
y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{array}
$$

where A_{k} and B_{k} matrices have dimensions $n y$-by-ny and $n y$-by-nu, respectively. ny is the number of outputs (the dimension of the vector $y(t)$) and $n u$ is the number of inputs.

See Also | idarx |
| :--- |
| idpoly |

Purpose
 Compute and compare loss functions for single-output ARX models

```
Syntax
V = arxstruc(ze,zv,NN)
V = arxstruc(ze,zv,NN,maxsize)
```


Arguments

ze
Estimation data set can be iddata or idfrd object.
zv
Validation data set can be iddata or idfrd object.
NN
Matrix defines the number of different ARX-model structures. Each row of NN is of the form:

```
nn = [na nb nk]
```

maxsize
Specified maximum data size. See Algorithm Properties for an explanation.

Description

Note Use arxstruc for single-output systems only. arxstruc supports both single-input and multiple-input systems.
$\mathrm{V}=$ arxstruc(ze,zv,NN) returns V , which contains the loss functions in its first row. The remaining rows of V contain the transpose of NN , so that the orders and delays are given just below the corresponding loss functions. The last column of V contains the number of data points in ze.
$\mathrm{V}=$ arxstruc(ze,zv,NN,maxsize) uses the additional specification of the maximum data size.
with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.

The output argument V is best analyzed using selstruc. The selection of a suitable model structure based on the information in v is normally done using selstruc.

Remarks

Examples

Each of ze and zv is an iddata object containing output-input data. Frequency-domain data and idfrd objects are also supported. Models for each of the model structures defined by NN are estimated using the data set ze. The loss functions (normalized sum of squared prediction errors) are then computed for these models when applied to the validation data set $z v$. The data sets ze and $z v$ need not be of equal size. They could, however, be the same sets, in which case the computation is faster.

This example uses the simulation data from a second-order idpoly model with additive noise. The data is split into two parts, where one part is the estimation data and the other is the validation data. You select the best model by comparing the output of models with orders ranging between 1 and 5 with the validating data. All models have an input-to-output delay of 1 .

```
% Create an ARX model for generaing data:
A = [1 -1.5 0.7]; B = [0 1 0.5];
m0 = idpoly(A,B);
% Generate a random input signal:
u = iddata([],idinput(400,'rbs'));
e = iddata([],0.1*randn(400,1));
% Simulate the output signal from the model m0:
y = sim(mO, [u e]);
z = [y,u]; % analysis data
NN = struc(1:5,1:5,1);
V = arxstruc(z(1:200),z(201:400),NN);
nn = selstruc(V,0);
m = arx(z,nn);
```

See Also \quad| Algorithm Properties | |
| :--- | :--- |
| arx | |
| idpoly | |
| ivstruc | |
| | selstruc |
| struc | |

Purpose

Syntax

Description

Algorithm

Examples

Reduce model order (requires Control System Toolbox product)

MRED $=$ balred (M)
MRED = balred(M,ORDER,'DisturbanceModel','None')

This function reduces the order of any model M given as an idmodel object. The resulting reduced-order model, MRED, is an idss model.

The function requires routines from the Control System Toolbox product.

ORDER: The desired order (dimension of the state-space representation). If ORDER = [], which is the default, a plot shows how the diagonal elements of the observability and controllability Gramians of a balanced realization decay with the order of the representation. You are then prompted to select an order based on this plot. The idea is that such a small element has a negligible influence on the input-output behavior of the model. We recommend that you choose an order such that only large elements in these matrices are retained.
'DisturbanceModel': If the property DisturbanceModel is set to 'None', then an output-error model MRED is produced: that is, one with the Kalman gain K equal to zero. Otherwise (default), the disturbance model is also reduced.

The function recognizes whether M is a continuous- or discrete-time model and performs the reduction accordingly. The resulting model, MRED, is similar to M in this respect.

There are several options for how the reduction is performed: AbsTol, RelTol, Offset, Elimination.

The function uses the balred algorithm in Control System Toolbox. The plot, in case ORDER $=$ [], shows the vector g returned by balreal.

Build a high-order multivariable ARX model, reduce its order to 3, and compare the frequency responses of the original and reduced models:

$$
M=\operatorname{arx}\left(\operatorname{data},\left[4 * \operatorname{ones}(3,3), 4^{*} \operatorname{ones}(3,2), \text { ones }(3,2)\right]\right) ;
$$

balred

```
MRED = balred(M,3);
bode(M,MRED)
```

Use the reduced-order model as an initial condition for a third-order state-space model.

```
M2 = pem(data,MRED);
```

See Also
balreal

Purpose Box-Jenkins (BJ) model estimation

```
Syntax \(\quad m=\operatorname{bj}(\) data, \([n b\) nc nd \(n f n k])\)
\(m=\) bj(data,[nb nc nd nf nk],'PropertyName',PropertyValue)
\(m=\) bj(data,m_initial)
```


Description

$m=\mathrm{bj}($ data, $[n b$ nc nd nf nk]) estimates Box-Jenkins model parameters and their covariances from input-output data. m is an idpoly object. data is a time-domain, single-output iddata object. $n b, n c$, $n d$, and $n f$ are orders of the B, C, D, and F polynomials, respectively. $n k$ is the input delay, specified as the number of samples. Orders and delay are scalar for single-input data, and row vectors for multiple-input data with the same size as the number of input channels.
$m=\mathrm{bj}(d a t a,[n b \mathrm{nc}$ nd nf nk],'PropertyName',PropertyValue) estimates Box-Jenkins model using algorithm options specified by idpoly property name-value pairs. See Algorithm Properties.
$m=\mathrm{bj}($ data,m_initial) refines previously estimated model m_initial, which is an idpoly object.
bj does not support frequency-domain and multiple-output data.

Definitions The general Box-Jenkins model structure is:

$$
y(t)=\sum_{i=1}^{n u} \frac{B_{i}(q)}{F_{i}(q)} u_{i}\left(t-n k_{i}\right)+\frac{C(q)}{D(q)} e(t)
$$

where $n u$ is the number of input channels.
The orders of Box-Jenkins model are defined as follows:

$$
\begin{aligned}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{aligned}
$$

Examples Estimate parameters of a single-input single-output Box-Jenkins model:

```
% Load SISO data.
    load iddata1;
% Estimate model parameters
    mbj = bj(z1,[2 2 2 2 1])
```

Estimate parameters of a multi-input single-output Box-Jenkins model:

```
% Load MISO data.
    load iddata8;
% Estimate model parameters
    mbj = bj(z8,[[[2 1 1] 1 1 [2 1 2] [5 10 15]])
```

Estimate parameters of a single-input single-output Box-Jenkins model using estimation algorithm properties:

```
% Generate estimation data using simulation.
    B = [0 1 0.5];
    C = [1 -1 0.2];
    D = [1 1.5 0.7];
    F = [11 -1.5 0.7];
    m0 = idpoly(1,B,C,D,F,0.1);
    e = iddata([],randn(200,1));
    u = iddata([],idinput(200));
    y = sim(m0,[u e]);
    z = [y u];
% Estimate model parameters.
    mbj_i = bj(z,[2 2 2 2 1]);
% Repeat the estimation with more iterations.
    mbj = bj(z,mbj_i,'MaxIter',50)
% View the estimation results.
    mbj.EstimationInfo
% Compare initial and refined model parameters.
    compare(z,mbj,mbj_i)
```

References Ljung, L. System Identification: Theory for the User, 2nd ed., Upper Saddle River, NJ, Prentice-Hall, 1999. See the chapter on computing the estimate.
See Also idmodel | oe | idpoly | n4sid | pem | Algorithm Properties | EstimationInfo
Tutorials - "Tutorial - Identifying Linear Models Using the Command Line"How To- "Identifying Input-Output Polynomial Models"- "Algorithms for Estimating Polynomial Models"

Purpose Compute and plot frequency response magnitude and phase for logarithmic frequencies

Syntax

```
bode(m)
bode(m,w)
bode(m('noise')
bode(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = bode(m)
[mag,phase,w,sdmag,sdphase] = bode(m)
```


Description

bode(m) plots a Bode plot for the model m, which can be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency response is a function of logarithmic frequencies in radians per unit time (stored as the TimeUnit model property). Default frequency values are computed from the model dynamics. For time series spectra, phase plots are omitted. For MIMO models, press Enter to view the next plot in the sequence of different I/O channel pairs, annotated using the InputNames and OuputNames model properties.
bode (m,w) plots a Bode plot at specified frequencies w in radians per unit time, which can be

- A vector of values.
- \{wmin, wmax\}, which specifies 100 logarithmically spaced frequency values ranging from a minimum value wmin and a maximum value wmax.
- \{wmin, wmax, np\}, which specifies np logarithmically spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies and can only limit the frequencies range for the internally stored frequencies using \{wmin, wmax\}.
bode(m('noise') plots a Bode plot of the output noise spectra when the model contains noise spectrum information.
bode(m1, ..., mN,'sd',sd,'mode','same', 'ap', ap,'fill') plots a Bode plot for several models. sd specifies the confidence region as a positive number that represents the number of standard deviations. The argument 'fill' indicates that the confidence region is color filled. mode = 'same' displays all I/O channels in the same plot. Set ap = ' A ' to show only amplitude plots, or $a p=$ ' P ' to show only phase plots.
[mag, phase,w] = bode(m) computes the magnitude mag and phase values of the frequency response, which are 3 -D arrays with dimensions (number of outputs)-by-(number of inputs)-by-(length of w). w specifies the frequency values for computing the response even if you did not specify it as an input. For SISO systems, mag ($1,1, k$) and phase $(1,1, k)$ are the magnitude and phase (in degrees) at the frequency $w(k)$. For MIMO systems, mag ($i, j, k)$ is the magnitude of the frequency response at frequency $w(k)$ from input j to output i, and similarly for phase (i, j, k). When m is a time series, mag is its power spectrum and phase is zero.
[mag, phase,w,sdmag,sdphase] = bode(m) computes the standard deviations of the magnitude sdmag and the phase sdphase. sdmag is an array of the same size as mag, and sdphase is an array of the same size as phase.

See Also | etfe | |
| :--- | :--- |
| | ffplot |
| | freqresp |
| | idfrd |
| | nyquist |
| | spa |
| | spafdr |

Purpose Compare model output and measured output

```
Syntax compare(data,m);
compare(data,m,k)
compare(data,m,k,'Samples',sampnr,'InitialState',init,'OutputPlots
    ,Yplots)
compare(data,m1,m2,\ldots.,mN)
compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN')
[yh,fit,x0] = compare(data,m1,'PlotStyle1',...,mN,'PlotStyleN',k)
```


Description

data is the output-input data in the usual iddata object format. data can also be an idfrd object with frequency-response data.
compare computes the output $y h$ that results when the model m is simulated with the input u. m can be any idmodel or idnlmodel model object. The result is plotted together with the corresponding measured output y. The percentage of the output variation that is explained by the model

```
fit = 100*(1 - norm(yh - y)/norm(y-mean(y)))
```

is also computed and displayed. For multiple-output systems, this is done separately for each output. For frequency-domain data (or in general for complex valued data) the fit is still calculated as above, but only the absolute values of y and yh are plotted.

When the argument k is specified, the k step-ahead prediction of y according to the model m are computed instead of the simulated output. In the calculation of $y h(t)$, the model can use outputs up to time $t-k$: $y(s), s=t-k, t-k-1, \ldots$ (and inputs up to the current time t). The default value of k is inf, which gives a pure simulation from the input only. Note that for frequency-domain data, only simulation ($k=i n f$) is allowed, and for time-series data (no input) only prediction (k not inf) is possible.

Property Name/Property Value Pairs

The optional property name/property value pairs 'Samples'/sampnr, 'InitialState'/init, and 'OutputPlots'/Yplots can be given in any order.

The argument Yplots can be a cell array of strings. Only the outputs with OutputName in this array are plotted, while all are used for the necessary computations. If Yplots is not specified, all outputs are plotted.

The argument sampnr indicates that only the sample numbers in this row vector are plotted and used for the calculation of the fit. The whole data record is used for the simulation/prediction.

The argument init determines how to handle initial conditions in the models:

- init = 'e' (for 'estimate') estimates the initial conditions for best fit.
- init = 'm' (for 'model') uses internally stored initial state of the model.
- init = 'z' (for 'zero') uses zero initial conditions.
- init = x0, where $x 0$ is a column vector of the same size as the state vector of the models, uses $x 0$ as the initial state.
- init = 'e' is the default.

Several Models

When several models are specified, as in compare(data, m1, m2, ..., mN), the plots show responses and fits for all models. In that case data should contain all inputs and outputs that are required for the different models. However, some models might correspond to subselections of channels and might not need all channels in data. In that case the proper handling of signals is based on the InputNames and OutputNames of data and the models.

With compare(data,m1,'PlotStyle1',...mN,'PlotStyle2'), the color, line style, and/or marker can be specified for the curves associated with the different models. The markers are the same as for the regular plot command. For example,

```
compare(data,m1,'g_*',m2,'r:')
```

If data contains several experiments, separate plots are given for the different experiments. In this case sampnr, if specified, must be a cell array with as many entries as there are experiments.

Arguments

When output arguments [yh,fit,x0] = compare(data,m1,..,mN) are specified, no plots are produced.
yh is a cell array of length equal to the number of models. Each cell contains the corresponding model output as an iddata object.
fit is, in the general case, a 3-D array with fit (kexp,kmod, ky) containing the fit (computed as above) for output ky, model kmod, and experiment kexp.
$x 0$ is a cell array, such that $x 0\{\mathrm{kmod}\}$ is the estimated initial state for model number kmod. If data is multiexperiment, $\mathrm{XO}\{\mathrm{kmod}\}$ is a matrix whose column number kexp is the initial state vector for experiment number kexp.

Examples Split the data record into two parts. Use the first one for estimating a model and the second one to check the model's ability to predict six steps ahead.

```
ze = z(1:250);
```

ze = z(1:250);
zv = z(251:500);
zv = z(251:500);
m= armax(ze,[2 3 1 0]);
m= armax(ze,[2 3 1 0]);
compare(zv,m,6);
compare(zv,m,6);
compare(zv,m,6,'Init','z') % No estimation of
compare(zv,m,6,'Init','z') % No estimation of
% the initial state.

```
    % the initial state.
```


See Also

```
findstates(idmodel)
pe
predict
sim
```

Purpose Estimate covariance functions for time-domain iddata object
Syntax
$R=\operatorname{covf}(d a t a, M)$
R = covf(data, M,maxsize)

Description

data is an iddata object and M is the maximum delay -1 for which the covariance function is estimated. The routine is intended for time-domain data only.

Let z contain the output and input channels

$$
z(t)=\left[\begin{array}{l}
y(t) \\
u(t)
\end{array}\right]
$$

where y and u are the rows of data.OutputData and data.InputData, respectively, with a total of nz channels.

R is returned as an $n z^{2}$-by- M matrix with entries

$$
R(i+(j-1) n z, k+1)=\frac{1}{N} \sum_{t=1}^{N} z_{i}(t) z_{j}(t+k)=\widehat{R}_{i j}(k)
$$

where z_{j} is the j th row of z, and missing values in the sum are replaced by zero.

The optional argument maxsize controls the memory size as explained under Algorithm Properties.

The easiest way to describe and unpack the result is to use

```
reshape(R(:,k+1),nz,nz) = E z(t)*z'(t+k)
```

Here ' is complex conjugate transpose, which also explains how complex data is handled. The expectation symbol E corresponds to the sample means.

Algorithm
 When nz is at most two, and when permitted by maxsize, a fast Fourier transform technique is applied. Otherwise, straightforward summing is used.

See Also
iddata
spa

```
Purpose Estimate impulse response using prewhitened-based correlation analysis
```

```
Syntax
```

Syntax
cra(data);
cra(data);
[ir,R,cl] = cra(data,M,na,plot);
[ir,R,cl] = cra(data,M,na,plot);
cra(R);

```
cra(R);
```


Description

data is the output-input data given as an iddata object. The routine is intended for time-domain data only.

The routine only handles single-input-single-output data pairs. (For the multivariate case, apply cra to two signals at a time, or use impulse.) cra prewhitens the input sequence; that is, cra filters u through a filter chosen so that the result is as uncorrelated (white) as possible. The output y is subjected to the same filter, and then the covariance functions of the filtered y and u are computed and graphed. The cross correlation function between (prewhitened) input and output is also computed and graphed. Positive values of the lag variable then correspond to an influence from u to later values of y. In other words, significant correlation for negative lags is an indication of feedback from y to u in the data.

A properly scaled version of this correlation function is also an estimate of the system's impulse response ir. This is also graphed along with 99% confidence levels. The output argument ir is this impulse response estimate, so that its first entry corresponds to lag zero. (Negative lags are excluded in ir.) In the plot, the impulse response is scaled so that it corresponds to an impulse of height $1 / T$ and duration T, where T is the sampling interval of the data.

The output argument R contains the covariance/correlation information as follows:

- The first column of R contains the lag indices.
- The second column contains the covariance function of the (possibly filtered) output.
- The third column contains the covariance function of the (possibly prewhitened) input.
- The fourth column contains the correlation function. The plots can be redisplayed by cra(R).

The output argument cl is the 99% confidence level for the impulse response estimate.

The optional argument M defines the number of lags for which the covariance/correlation functions are computed. These are from -M to M, so that the length of R is $2 M+1$. The impulse response is computed from 0 to M. The default value of M is 20 .

For the prewhitening, the input is fitted to an AR model of order na. The third argument of cra can change this order from its default value na $=10$. With na $=0$ the covariance and correlation functions of the original data sequences are obtained.
plot: plot $=0$ gives no plots. plot $=1$ (the default) gives a plot of the estimated impulse response together with a 99% confidence region. plot $=2$ gives a plot of all the covariance functions.

An often better alternative to cra is the functions impulse and step, which use a high-order FIR model to estimate the impulse response.

Examples

Compare a second-order ARX model's impulse response with the one obtained by correlation analysis.

```
ir = cra(z);
m = arx(z,[2 2 1]);
imp = [1;zeros(19,1)];
irth = sim(m,imp);
subplot(211)
plot([ir irth])
title('impulse responses')
subplot(212)
plot([cumsum(ir),cumsum(irth)])
title('step responses')
```

See Also
impulse
step

Purpose Custom nonlinearity estimator for nonlinear ARX and

 Hammerstein-Wiener models```
Syntax
C=customnet(H)
C=customnet(H,PropertyName,PropertyValue)
```


## Description

## Construction

customnet is an object that stores a custom nonlinear estimator with a user-defined unit function. This custom unit function uses a weighted sum of inputs to compute a scalar output.

C=customnet ( H ) creates a nonlinearity estimator object with a user-defined unit function using the function handle H . H must point to a function of the form $[f, g, a]=$ gaussunit $(x)$, where $f$ is the value of the function, $g=d f / d x$, and a indicates the unit function active range. Name the function gaussunit.m. g is significantly nonzero in the interval [-a a]. Hammerstein-Wiener models require that your custom nonlinearity have only one input and one output.

C=customnet(H,PropertyName,PropertyValue) creates a nonlinearity estimator using property-value pairs defined in "customnet Properties" on page 2-58.

## Remarks

Use customnet to define a nonlinear function $y=F(x)$, where $y$ is scalar and $x$ is an m-dimensional row vector. The unit function is based on the following function expansion with a possible linear term $L$ :

$$
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}+c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}+c_{n}\right)+d
\end{aligned}
$$

where $f$ is a unit function that you define using the function handle $H$.
$P$ and $Q$ are m-by-p and m-by-q projection matrices, respectively. The projection matrices $P$ and $Q$ are determined by principal component analysis of estimation data. Usually, $\mathrm{p}=\mathrm{m}$. If the components of $x$ in the estimation data are linearly dependent, then $p<m$. The number of columns of $Q$, $q$, corresponds to the number of components of $x$ used in the unit function.

## customnet Properties

When used to estimate nonlinear ARX models, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used to estimate Hammerstein-Wiener models, $\mathrm{m}=\mathrm{q}=1$ and $Q$ is a scalar.
$r$ is a $1-b y$-m vector and represents the mean value of the regressor vector computed from estimation data.
$d, a$, and $c$ are scalars.
$L$ is a $p-b y-1$ vector.
$b$ represents $\mathrm{q}-b y-1$ vectors.
The function handle of the unit function of the custom net must have the form $[f, g, a]=$ function_name $(x)$. This function must be vectorized, which means that for a vector or matrix $x$, the output arguments $f$ and g must have the same size as x and be computed element-by-element.

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
% Get value of NumberOfUnits property
C.NumberOfUnits
```

You can also use the set function to set the value of particular properties. For example:

```
set(C, 'LinearTerm', 'on')
```

The first argument to set must be the name of a MATLAB variable.

| Property Name | Description |
| :---: | :---: |
| NumberOfUnits | Integer specifies the number of nonlinearity units in the expansion. <br> Default=10. <br> For example: <br> customnet (H, 'NumberOfUnits', 5) |
| LinearTerm | Can have the following values: <br> - 'on '—Estimates the vector $L$ in the expansion. <br> - 'off'-Fixes the vector $L$ to zero. <br> For example: <br> customnet(H, 'LinearTerm', 'on') |
| Parameters | A structure containing the parameters in the nonlinear expansion, as follows: <br> - RegressorMean: 1-by-m vector containing the means of $x$ in estimation data, $r$. <br> - NonLinearSubspace: m-by-q matrix containing $Q$. <br> - LinearSubspace: m-by-p matrix containing $P$. <br> - LinearCoef: p-by-1 vector $L$. <br> - Dilation: $q-b y-1$ matrix containing the values b_k. <br> - Translation: 1-by-n vector containing the values c_k. <br> - OutputCoef: $n$-by-1 vector containing the values a_k. <br> - OutputOffset: scalar d. <br> Typically, the values of this structure are set by estimating a model with a customnet nonlinearity. |
| UnitFen | Stores the function handle that points to the unit function. |

Algorithm

## Examples

Define custom unit function and save it in gaussunit.m:

```
function [f, g, a] = GAUSSUNIT(x)
% x: unit function variable
% f: unit function value
% g: df/dx
% a: unit active range (g(x) is significantly
% nonzero in the interval [-a a])
% The unit function must be "vectorized": for
% a vector or matrix x, the output arguments f and g
% must have the same size as x,
% computed element-by-element.
% GAUSSUNIT customnet unit function example
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
 g = - 2*x.*f;
 a = 0.2;
end
```

Use custom networks in nlarx and nlhw model estimation commands:

```
% Define handle to example unit function.
H = @gaussunit;
% Estimate nonlinear ARX model using
% Gauss unit function with 5 units.
m = nlarx(Data,Orders,customnet(H,'NumberOfUnits',5));
```

See Also
evaluate | nlarx | nlhw
How To . "Identifying Nonlinear ARX Models"

- "Identifying Hammerstein-Wiener Models"


## Purpose <br> Custom regressor for nonlinear ARX models

```
Syntax
C=customreg(Function, Variables) C=customreg(Function, Variables,Delays, Vectorized)
```

customreg class represents arbitrary functions of past inputs and outputs, such as products, powers, and other MATLAB expressions of input and output variables.

You can specify custom regressors in addition to or instead of standard regressors for greater flexibility in modeling your data using nonlinear ARX models. For example, you can define regressors like tan(u(t-1)), $u(t-1)^{2}$, and $u(t-1)^{*} y(t-3)$.

For simpler regressor expressions, specify custom regressors directly in the GUI or in the nlarx estimation command. For more complex expressions, create a customreg object for each custom regressor and specify these objects as inputs to the estimation. Regardless of how you specify custom regressors, the toolbox represents these regressors as customreg objects. Use getreg to list the expressions of all standard and custom regressors in your model.

A special case of custom regressors involves polynomial combinations of past inputs and outputs. For example, it is common to capture nonlinearities in the system using polynomial expressions like $y(t-1) 2$, $u(t-1) 2, y(t-2) 2, \mathrm{y}(t-1)^{*} y(t-2), y(t-1)^{*} u(t-1), y(t-2)^{*} u(t-1)$. At the command line, use the polyreg command to generate polynomial-type regressors automatically by computing all combinations of input and output variables up to a specified degree. polyreg produces customreg objects that you specify as inputs to the estimation.

The nonlinear ARX model (idnlarx object) stores all custom regressors as the CustomRegressors property. You can list all custom regressors using m . CustomRegressors, where m is a nonlinear ARX model. For MIMO models, to retrieve the rth custom regressor for output ky, use m. CustomRegressors $\{k y\}(r)$.

Use the Vectorized property to specify whether to compute custom regressors using vectorized form during estimation. If you know
that your regressor formulas can be vectorized, set Vectorized to 1 to achieve better performance. To better understand vectorization, consider the custom regressor function handle $z=@(x, y) x^{\wedge} 2^{*} y . x$ and $y$ are vectors and each variable is evaluated over a time grid. Therefore, $z$ must be evaluated for each (xi, yi) pair, and the results are concatenated to produce a $z$ vector:

```
for k = 1:length(x)
 z(k) = x(k)^2* y (k)
end
```

The above expression is a nonvectorized computation and tends to be slow. Specifying a Vectorized computation uses MATLAB vectorization rules to evaluate the regressor expression using matrices instead of the FOR-loop and results in faster computation:

```
% ".*" indicates element-wise operation
z=(x.^2).*y
```


## Construction

C=customreg(Function, Variables) specifies a custom regressor for a nonlinear ARX model. $C$ is a customreg object that stores custom regressor. Function is a handle or string representing a function of input and output variables. Variables is a cell array of strings that represent the names of model inputs and outputs in the function Function. Each input and output name must coincide with the strings in the InputName and OutputName properties of the corresponding idnlarx object. The size of Variables must match the number of Function inputs. For multiple-output models with p outputs, the custom regressor is a p-by- 1 cell array or an array of customreg object, where the kyth entry defines the custom regressor for output ky. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.

C=customreg(Function, Variables, Delays, Vectorized) create a custom regressor that includes the delays corresponding to inputs or outputs in Arguments. Delays is a vector of positive integers that represent the delays of Variables variables (default is 1 for each vector element). The size of Delays must match the size of Variables.

Vectorized value of 1 uses MATLAB vectorization rules to evaluate the regressor expression Function. By default, Vectorized value is 0 (false).

## Properties

After creating the object, you can use get or dot notation to access the object property values. For example:

```
% List all property values
get(C)
% Get value of Arguments property
C.Arguments
```

You can also use the set function to set the value of particular properties. For example:

```
set(C,'Vectorized',1)
```

| Property Name | Description |
| :--- | :--- |
| Function | Function handle or string representing a function of standards <br> regressors. <br> For example: <br> $c r=@(x, y) ~$ |
| Variables | Cell array of strings that represent the names of model input <br> and output variables in the function Function. Each input and <br> output name must coincide with the strings in the InputName <br> and OutputName properties of the idnlarx object-the model <br> for which you define custom regressors. The size of Variables <br> must match the number of Function inputs. <br> For example, Variables correspond to \{'y1', 'u1'\} in: <br> $C=$ customreg(cr, \{'y1', 'u1'\}, [2 3]) |


| Property Name | Description |
| :--- | :--- |
| Delays | Vector of positive integers representing the delays of <br> Variables. The size of Delays must match the size of <br> Arguments. |
|  | Default: 1 for each vector element. <br> For example, Delays are [2 3] in: <br> C = customreg(cr, \{'y1', 'u1'\}, [2 3]) |
| Vectorized | Assignable values: <br> - 0 (default)—Function is not computed in vectorized form. <br> - 1—Function is computed in vectorized form when called <br> with vector arguments. |

## Examples

Define custom regressors as a cell array of strings:

```
load iddata1
m = nlarx(z1,[2 2 1]);
C={'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'};
% u1 and y1 are system input and output
m.CustomRegressors = C;
m=pem(z1,m)
```

Define custom regressors directly in the estimation command nlarx:

```
m = nlarx(data,[na nb nk],'linear',...
 'CustomRegressors',...
 {'u1(t-1)*sin(y1(t-3))','u1(t-2)^3'});
```

Define custom regressors as an object array of customreg objects:

```
cr1=@(x,y) x*sin(y);
cr2=@(x) x^3;
C=[customreg(cr1,{'u' 'y'},[1 3]),...
 customreg(cr2,{'u'},2)];
m=addreg(m,C);
```

Use vectorization rules to evaluate regressor expression during estimation:

```
C = customreg(@(x,y) x*sin(y),{'u' 'y'},[1 3])
set(C,'Vectorized',1)
m = nlarx(data,[na nb nk],'sigmoidnet','CustomReg',C)
```


## See Also <br> addreg | getreg | idnlarx | nlarx | polyreg

How To . "Identifying Nonlinear ARX Models"

## Purpose

Transform linear model from continuous to discrete time

## Syntax

$m d=c 2 d(m c, T)$
md = c2d(mc, T,method)
[md,G] = c2d(mc, T,method)

## Description

mc is a continuous-time model such as any idmodel object (idgrey, idproc, idpoly, or idss). md is the model that is obtained when it is sampled with sampling interval T.
method = 'zoh' (default) makes the translation to discrete time under the assumption that the input is piecewise constant (zero-order hold).
method = 'foh' assumes the input to be piecewise linear between the sampling instants (first-order hold).

When you have the Control System Toolbox product installed, you can also use the following methods: 'tustin', and 'matched'. In these cases, no translation of the covariance matrix takes place.

Note that the innovations variance $\lambda$ of the continuous-time model is interpreted as the intensity of the spectral density of the noise spectrum. The noise variance in md is thus given as $\lambda / T$.
idpoly and idss models are returned in the same format. idgrey structures are preserved if their CDMfile property is equal to 'cd'. Otherwise they are transformed to idss objects. idproc models are returned as idgrey objects.
For idpoly models, the covariance matrix is translated by the use of numerical derivatives. The step sizes used for the differentiation are given by the function nuderst. For idss, idproc, and idgrey models, the covariance matrix is not translated, but covariance information about the input-output properties is included in md. To inhibit the translation of covariance information (which may take some time), use c2d(mc, T, 'covariance', 'none').

The output argument $G$ is a matrix that transforms the initial state $x 0$ of mc to the initial state of md as
XOd=G * [XO; u(0)],
where $u(0)$ is the input at time 0 . For idproc models, the state variables correspond to those of idgrey (mc). For idpoly models, G is returned as the empty matrix.

## Examples

Define a continuous-time system and study the poles and zeros of the sampled counterpart.

```
mc = idpoly(1,1,1,1,[1 1 0],'Ts',0);
md = c2d(mc,0.5);
pzmap(md)
```


## See Also

d2c

## Purpose

Map past input/output data to current states of nonlinear ARX model
Syntax
X = data2state (MODEL, IOSTRUCT)
X = data2state (MODEL, DATA)

X = data2state (MODEL, IOSTRUCT) maps the input and output samples in IOSTRUCT to the current states of MODEL, X. For a definition of the states of idnlarx models, see "Definition of idnlarx States" on page $2-189$. The data in IOSTRUCT is interpreted as past samples of data, so that the returned state values must be interpreted as values at the time immediately after the time corresponding to the last (most recent) sample in the data.

X = data2state(MODEL, DATA) maps the input and output samples from DATA to the current states, $X$, of the model.

## Input

- MODEL: idnlarx model.
- IOSTRUCT: Structure with fields Input and Output. Samples in IOSTRUCT must be in the order of increasing time (the last row of values corresponds to the most recent time). Each field contains data samples corresponding to the past input and output of MODEL respectively.
- Input: Matrix of NU columns, where NU is the number of inputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all input variables).
- 1 to specify steady-state (constant) input values.
- Output: Matrix of NY columns, where NY is the number of outputs. The number of rows can be equal to either of the following:
- Maximum input delay in MODEL (maximum across all output variables).
- 1 to specify steady-state (constant) output values.


## data2state(idnlarx)

- DATA: iddata object containing data samples. Samples in DATA must be in the order of increasing time (the last row of values corresponds to the most recent time). The number of samples in DATA must be greater than or equal to the maximum delay in the model across all input and output variables.

Note To determine maximum delay in each input and output channel of MODEL, use the getDelayInfo command. For more information, see the getDelayInfo reference page.

## Output $\quad \mathrm{X}$ is the state vector of MODEL corresponding to the time after the most

 recent sample in the input data (IOSTRUCT or DATA).
## Examples

In this example you determine the current state of an idnlarx model.
1 Load your data and create a data object.

```
load motorizedcamera;
z = iddata(y,u,0.02,'Name','Motorized Camera', ...
 'TimeUnit','s');
```

2 Estimate an idnlarx model from the data. The model has 6 inputs and 2 outputs.

```
mw1 = nlarx(z,[ones(2,2),ones(2,6),ones(2,6)],wavenet);
```

3 Compute the maximum delays across all output variables in mw1.

```
MaxDelays = getDelayInfo(mw1);
```

4 Represent the past input and output samples:

```
IOData = struct('Input', ...
 rand(max(MaxDelays(3+1:end)),6),...
 'Output', ...
```

```
rand(max(MaxDelays(1:3)),2));
```

5 Compute the current states of mw1 based on the past data in IOSTRUCT.

```
X = data2state(mw1,IOData)
```

The previous command computes the state vector.

```
Note You can specify constant input levels with scalar values \((10,20,30,40,50,60)\) for the input variables by setting IOSTRUCT. Input \(=[10,20,30,40,50,60]\) instead of a matrix of values.
```

See Also<br>findop(idnlarx)<br>findstates(idnlarx)<br>getDelayInfo

## Purpose Class representing dead-zone nonlinearity estimator for

 Hammerstein-Wiener models
## Syntax s=deadzone(ZeroInterval, I)

Description

## Remarks

Properties
deadzone is an object that stores the dead-zone nonlinearity estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=deadzone(ZeroInterval, I) creates a dead-zone nonlinearity estimator object, initialized with the zero interval I.

Use evaluate $(d, x)$ to compute the value of the function defined by the deadzone object $d$ at $x$.

Use deadzone to define a nonlinear function $y=F(x)$, where $F$ is a function of $x$ and has the following characteristics:

$$
\begin{array}{ll}
a \leq x<b & F(x)=0 \\
x<a & F(x)=x-a \\
x \geq b & F(x)=x-b
\end{array}
$$

$y$ and $x$ are scalars.
You can specify the property value as an argument in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:
\% List ZeroInterval property value
get(d)
d.ZeroInterval

You can also use the set function to set the value of particular properties. For example:

```
set(d, 'ZeroInterval', [-1.5 1.5])
```

The first argument to set must be the name of a MATLAB variable.

| Property Name | Description |
| :--- | :--- |
| ZeroInterval | 1-by-2 row vector that specifies the initial zero interval of the <br> nonlinearity. <br> Default=[NaN NaN]. <br> For example: <br> deadzone('ZeroInterval ' , [-1.5 1.5]) |

## Examples

Use deadzone to specify the dead-zone nonlinearity estimator in Hammerstein-Wiener models. For example:

```
m=nlhw(Data,Orders,deadzone([-1 1]),[]);
```

The dead-zone nonlinearity is initialized at the interval [-1 1 1]. The interval values are adjusted to the estimation data by nlhw.

## See Also

nlhw

## delayest

Purpose Estimate time delay (dead time) from data

```
Syntax
nk = delayest(Data)
nk = delayest(Data,na,nb,nkmin,nkmax,maxtest)
```


## Description

Data is an iddata object containing the input-output data. It can also be an idfrd object defining frequency-response data. Only single-output data can be handled.
nk is returned as an integer or a row vector of integers, containing the estimated time delay in samples from the input(s) to the output in Data.

The estimate is based on a comparison of ARX models with different delays:

$$
\begin{aligned}
& y(t)+a_{1} y(t-1)+\ldots+a_{n a} y(t-n a)= \\
& b_{1} u(t-n k)+\ldots+b_{n b} u(t-n b-n k+1)+e(t)
\end{aligned}
$$

The integer na is the order of the A polynomial (default 2). nb is a row vector of length equal to the number of inputs, containing the order(s) of the B polynomial(s) (default all 2).
nkmin and nkmax are row vectors of the same length as the number of inputs, containing the smallest and largest delays to be tested. Defaults are nkmin $=0$ and nkmax $=n k m i n+20$.

If nb, nkmax, and/or nkmin are entered as scalars in the multiple-input case, all inputs will be assigned the same values.
maxtest is the largest number of tests allowed (default 10,000).

## Purpose Subtract offset or trend from data signals

Syntax<br>Description

data_d = detrend(data)
data_d = detrend(data,Type)
[data_d,T] = detrend(data,Type)
data_d = detrend(data,1,brkp)

Examples
data_d = detrend(data) subtracts the mean value from each time-domain or time-series signal data. data_d and data are iddata objects.
data_d = detrend(data,Type) subtracts a mean value from each signal when Type $=0$, a linear trend (least-squares fit) when Type $=$ 1, or a trend specified by a TrendInfo object when Type $=T$.
[data_d, T ] = detrend(data,Type) stores the trend information as a TrendInfo object T.
data_d = detrend(data, 1,brkp) subtracts a piecewise linear trend at one or more breakpoints brkp. brkp is a data index where discontinuities between successive linear trends occur. When brkp contains breakpoints that match the time vector, detrend subtracts a continuous piecewise linear trend. You cannot store piecewise linear trend information as an output argument.

Subtract mean values from input and output signals and store the trend information:

```
% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling interval of 0.08 sec.
data=iddata(y2,u2,0.08)
% Plot data on a time plot. Data has a nonzero mean.
plot(data)
% Remove the mean from the data.
[data_d,T] = detrend(data,0)
% Plot detrended data on the same plot.
hold on
```

```
plot(data_d)
```

Remove specified offset from input and output signals:

```
% Load SISO data containing vectors u2 and y2.
load dryer2
% Create data object with sampling time of 0.08 sec.
data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends.
T = getTrend(data)
% Assign offset values to the TrendInfo object.
T.InputOffset=5;
T.OutputOffset=5;
% Subtract offset from the data.
data_d = detrend(data,T)
% Plot detrended data on the same plot.
hold on
plot(data_d)
```

Subtract several linear trends that connect at three breakpoints [30 60 90]:

```
data = detrend(data,1,[30 60 90]);
% [30 60 90] are data indexes where breakpoints occur.
```

Subtract a mean value from the input signal and a V-shaped trend from the output signal, such that the V peak occurs at the breakpoint value of 119:

```
zd1 = z(:,:,[]); zd2 = z(:,[],:);
zd1(:,1,[]) = detrend(z(:,1,[]),1,119);
zd2(:,[],1) = detrend(z(:,[],1));
zd = [zd1,zd2];
```

See Also
getTrend | retrend | TrendInfo
How To . "Handling Offsets and Trends in Data"

Purpose Difference signals in iddata objects
Syntax $\quad \begin{aligned} \text { zdi } & =\operatorname{diff}(z) \\ z d i & =\operatorname{diff}(z, n)\end{aligned}$
Description
$z$ is a time-domain iddata object. $\operatorname{diff}(z)$ and $\operatorname{diff}(z, n)$ apply this command to each of the input/output signals in $z$.

$$
\begin{array}{ll}
\text { Purpose } & \text { Transform linear model from discrete to continuous time } \\
\text { Syntax } & m c=d 2 c(m d) \\
& m c=d 2 c(m d, m e t h o d) \\
& m c=d 2 c(m d, ' C o v a r i a n c e M a t r i x ', c o v, ~ ' I n p u t D e l a y ~ ', ~ i n p d) ~
\end{array}
$$

Description
The discrete-time model md, given as any idmodel object, is converted to a continuous-time counterpart mc. The covariance matrix of the parameters in the model is also translated using the Gauss approximation formula and numerical derivatives of the transformation. The step sizes in the numerical derivatives are determined by the function nuderst. To inhibit the translation of the covariance matrix and save time, enter among the input arguments (..., 'CovarianceMatrix, 'None, ....)) (any abbreviations will do).
method is one of the input intersample behaviors 'zoh ' (zero-order hold) or 'foh' (first-order hold). If method is not specified, the InterSample behavior of the data from which md was estimated is used.

When you have Control System Toolbox installed, you can also use the following methods: 'tustin', and 'matched'. In these cases, no translation of the covariance matrix takes place.

If the discrete-time model contains pure time delays, that is, $n k>1$, then these are first removed before the transformation is made. These delays are appended as pure time delay (dead time) to the continuous-time model as the property InputDelay. To have the time delay approximated by a finite-dimensional continuous system, enter among the input arguments (..., 'InputDelay ' $0, \ldots$ ).

If the noise variance is $\lambda$ in md , and its sampling interval is $T$, then the continuous-time model has an indicated level of noise spectral density equal to $T \lambda$.

While idpoly and idss models are returned in the same format, idarx models are returned as idss models mc. The reason is that the transformation does not preserve the special structure of idarx. The idgrey structures are preserved if their CDMfile property is equal to cd. Otherwise they are transformed to idss objects.

> Note The transformation from discrete to continuous time is not unique. d2c selects the continuous-time counterpart with the slowest time constants consistent with the discrete-time model. The lack of uniqueness also means that the transformation can be ill-conditioned or even singular. In particular, poles on the negative real axis, in the origin, or in the point 1, are likely to cause problems. Interpret the results with care.

## Examples

Transform an identified model to continuous time and compare the frequency responses of the two models.

```
m = n4sid(data,3)
mc = d2c(m);
bode(m,mc,'sd',3)
```

Note that you can include the transformation to continuous time in the n4sid command by specifying the model to be continuous time.

```
mc = n4sid(data,3,'Ts',0)
```


## See Also <br> c2d

nuderst

## EstimationInfo

| Purpose | Information about linear model estimation results |
| :--- | :--- |
| Syntax | m.EstimationInfo <br> m.es <br> m.es.DataLength, etc |
| Description | EstimationInfo for linear models is a structure whose fields give <br> information about the results of model estimation. Depending on <br> whether it is an estimated parametric idmodel or an estimated <br> frequency response idfrd, EstimationInfo contains different fields. |

Note For a description of nonlinear model EstimationInfo property, see the corresponding nonlinear model reference page.

## idmodel Case

The model structure will contain the properties ParameterVector, CovarianceMatrix, and NoiseVariance, which are all calculated in the estimation process (see the reference page for idmodel). In addition, EstimationInfo contains the following fields:

- Status: Information whether the model has been estimated, or modified after being estimated.
- Method: Name of the estimation command that produced the model.
- LossFcn: Value of the identification criterion at the estimate. Normally equal to the determinant of the covariance matrix of the prediction errors, that is, the determinant of NoiseVariance. Note that the loss function for the minimization might be different due to LimitError. The value of the nonrobustified loss function is always stored in LossFcn.
- FPE: Akaike's Final Prediction Error, defined as LossFen * $(1+d / N\} /(1-d / N)$, where $d$ is the number of estimated parameters and $N$ is the length of the data record.
- DataName: Name of the data set from which the model was estimated. This is equal to the property name of the iddata object. If this was not defined, the name of the iddata variable is used.
- DataLength: Length of the data record.
- DataTs: Sampling interval of the data.
- DataDomain: 'Time' or 'Frequency', depending on the data domain.
- DataInterSample: Intersample behavior of the data from which the model was estimated. This equals the property InterSample of the iddata object. (See iddata.)
- WhyStop: For models that have been estimated by iterative search. The stopping rule that caused the iterations to terminate. Assumes values such as'MaxIter reached', 'No improvement possible along the search vector', or 'Near (local) minimum'. The latter means that the expected improvement is less than Tolerance (see Algorithm Properties).
- UpdateNorm: Norm of the Gauss-Newton vector at the last iteration.
- LastImprovement: Relative improvement of the criterion value at the last iteration.
- Iterations: Number of iterations used in the search.
- InitialState: Option actually used when Model.InitialState = 'auto'.
- N4Weight: For n4sid estimates, or estimates that have been initialized by n 4 sid: the actual value of N4Weight used.
- N4Horizon: For n4sid estimates, or estimates that have been initialized by n4sid: the actual value of N4Horizon used. See n4sid and Algorithm Properties.


## idfrd Case

If the idfrd model is obtained from an estimated parametric model,

$$
\mathrm{g}=\mathrm{idfrd}(\text { Model })
$$

g.EstimationInfo is the same as Model.EstimationInfo as described above.

For an idfrd model that has been estimated from etfe, spa, or spafdr, EstimationInfo contains the following fields:

- Status: Whether the model is estimated or directly constructed.
- Method: etfe, spa, or spafdr
- WindowSize: Resolution parameter (or vector) used for the estimation
- DataName, DataLength, DataTs, DataDomain, DataInterSample: Properties of the estimation data as above.


## See Also

Algorithm Properties
idpoly
idss

## Purpose

Estimate empirical transfer functions and periodograms

## Syntax

```
g = etfe(data)
g = etfe(data,M,N)
```

etfe estimates the transfer function $g$ as an idfrd object of the general linear model:

$$
y(t)=G(q) u(t)+v(t)
$$

data contains the output-input data and is an iddata object (time or frequency domain).
g is given as an idfrd object with the estimate of $G\left(e^{i \omega}\right)$ at the frequencies

$$
w=[1: N] / N * p i / T
$$

The default value of N is 128 .
In case data contains a time series (no input channels), $g$ is returned as the periodogram of $y$.

When $M$ is specified other than the default value $M=$ [ ], a smoothing operation is performed on the raw spectral estimates. The effect of $M$ is then similar to the effect of $M$ in spa. This can be a useful alternative to spa for narrowband spectra and systems, which require large values of M.

When etfe is applied to time series, the corresponding spectral estimate is normalized in the way that is defined in "Spectrum Normalization". etfe normalization differs from the spectrum normalization in the Signal Processing Toolbox product.
If the (input) data is marked as periodic (data.Period = integer) and contains an even number of periods, the response is computed at the frequencies k*2*pi/period for $\mathrm{k}=0$ up to the Nyquist frequency.

Examples Compare an empirical transfer function estimate to a smoothed spectral estimate.

```
ge = etfe(z);
gs = spa(z);
bode(ge,gs)
```

Generate a periodic input, simulate a system with it, and compare the frequency response of the estimated model with the true system at the excited frequency points.

```
m = idpoly([[1 -1.5 0.7],[0 1 0.5]);
u = iddata([],idinput([50,1,10],'sine'));
u.Period = 50;
y = sim(m,u);
me = etfe([y u])
bode(me,'b*',m)
```


## Algorithm

The empirical transfer function estimate is computed as the ratio of the output Fourier transform to the input Fourier transform, using fft. The periodogram is computed as the normalized absolute square of the Fourier transform of the time series.

You obtain the smoothed versions (M less than the length of $z$ ) by applying a Hamming window to the output fast Fourier transform (FFT) times the conjugate of the input FFT, and to the absolute square of the input FFT, respectively, and subsequently forming the ratio of the results. The length of this Hamming window is equal to the number of data points in $z$ divided by M, plus one.

## See Also <br> bode <br> ffplot <br> freqresp <br> idfrd

nyquist
spa
spafdr

## Purpose Value of nonlinearity estimator at given input

## Syntax $\quad$ value $=$ evaluate $(n l, x)$

Arguments
nl
Nonlinearity estimator object.
x
Value at which to evaluate the nonlinearity.
If nl is a single nonlinearity estimator, then x is a 1 -by- nx row vector or an nv-by-nx matrix, where $n x$ is the dimension of the regression vector input to $\mathrm{nl}(\mathrm{size}(\mathrm{nl})$ ) and nv is the number of points where nl is evaluated.

If $n l$ is an array of ny nonlinearity estimators, then $x$ is a 1 -by-ny cell array of nv-by-nx matrices.

## Description

Example The following syntax evaluates the nonlinearity of an estimated nonlinear ARX model m:

```
value = evaluate(m.Nonlinearity,x)
```

where m.Nonlinearity accesses the nonlinearity estimator of the nonlinear ARX model.

See Also<br>idnlarx<br>idnlhw

Purpose Concatenate frequency-domain signals in data objects

## Syntax $\quad$ Mc $=\operatorname{fcat}(M 1, M 2, \ldots M n)$

Description
M1, M2, etc., are all idfrd objects or iddata frequency-domain objects. Mc is the corresponding object obtained by concatenation of the responses at all the frequencies in Mk.
Note that for iddata objects, this is the same as vertical concatenation (vertcat).
Mc = [M1;M2; ..;Mn].

## See Also <br> fselect <br> iddata <br> idfrd

Purpose Identify possible feedback data

## Syntax [fbck,fbcko,nudir] = feedback(Data)

Description Data is an iddata set with $N y$ outputs and $N u$ inputs.
fbck is an $N y$-by- $N u$ matrix indicating the feedback. The $k y, k u$ entry is a measure of feedback from output $k y$ to input $k u$. The value is a probability $P$ in percent. Its interpretation is that if the hypothesis that there is no feedback from output $k y$ to input $k u$ were tested at the level $P$, it would have been rejected. An intuitive but technically incorrect way of thinking about this is to see $P$ as "the probability of feedback." Often only values above $90 \%$ are taken as indications of feedback. When fbck is calculated, direct dependence at lag zero between $u(t)$ and $y(t)$ is not regarded as a feedback effect.
fbck0: Same as fbck, but direct dependence at lag 0 between $u(t)$ and $y(t)$ is viewed as feedback effect.
nudir: A vector containing those input numbers that appear to have a direct effect on some outputs, that is, no delay from input to output.

See Also | advice |
| :--- |
| iddata |
| idmodel |

## Purpose

## Syntax

## Description

Compute and plot frequency response magnitude and phase for linear frequencies

```
ffplot(m)
```

ffplot(m)
ffplot(m,w)
ffplot(m,w)
ffplot(m('noise')
ffplot(m('noise')
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
ffplot(m1,...,mN,'sd',sd,'mode','same','ap',ap,'fill')
[mag,phase,w] = ffplot(m)
[mag,phase,w] = ffplot(m)
[mag,phase,w,sdmag,sdphase] = ffplot(m)

```
[mag,phase,w,sdmag,sdphase] = ffplot(m)
```

ffplot(m) plots a frequency response plot for the model m, which can be an idpoly, idss, idarx, idgrey, or idfrd object. This frequency response is a function of linear frequencies in units of inverse time (stored as the TimeUnit model property). The default frequency values are determined from the model dynamics. For time series spectra, phase plots are omitted. For MIMO models, press Enter to view the next plot in the sequence of different I/O channel pairs, annotated using the InputNames and OuputNames model properties.
ffplot(m,w) plots a frequency response plot at specified frequencies w in inverse time units, which can be:

- A vector of values.
- \{wmin, wmax\}, which specifies 100 linearly spaced frequency values ranging from a minimum value wmin and a maximum value wmax.
- \{wmin, wmax, np\}, which specifies np linearly spaced frequency values.

Note For idfrd models, you cannot specify individual frequencies and can only limit the frequencies range for the internally stored frequencies using \{wmin,wmax\}.
ffplot(m('noise') plots a frequency response plot of the output noise spectra when the model contains noise spectrum information.

## ffplot

ffplot(m1,..., mN,'sd',sd,'mode','same', 'ap',ap,'fill') plots a frequency response plot for several models. sd specifies the confidence region as a positive number that represents the number of standard deviations. The argument 'fill' indicates that the confidence region is color filled. mode $=$ 'same' displays all I/O channels in the same plot. Set $a p=$ ' $A$ ' to show only amplitude plots, or $a p=' P$ ' to show only phase plots.
[mag, phase,w] = ffplot(m) computes the magnitude mag and phase values of the frequency response, which are $3-\mathrm{D}$ arrays with dimensions (number of outputs)-by-(number of inputs)-by-(length of w). w specifies the frequency values for computing the response even if you did not specify it as an input. For SISO systems, mag (1, 1, k) and phase ( $1,1, k$ ) are the magnitude and phase (in degrees) at the frequency $w(k)$. For MIMO systems, mag (i, j,k) is the magnitude of the frequency response at frequency $w(k)$ from input $j$ to output $i$, and similarly for phase ( $i, j, k$ ). When $m$ is a time series, mag is its power spectrum and phase is zero.
[mag,phase,w,sdmag,sdphase] = ffplot(m) computes the standard deviations of the magnitude sdmag and the phase sdphase. sdmag is an array of the same size as mag, and sdphase is an array of the same size as phase.

See Also | bode |  |
| :--- | :--- |
| etfe |  |
|  | freqresp |
| idfrd |  |
|  | nyquist |
| spa |  |
| spafdr |  |

| Purpose | Transform iddata object to frequency domain data |
| :---: | :---: |
| Syntax | ```Datf = fft(Data) Datf = fft(Data,N) Datf = fft(Data,N,'complex')``` |
| Description | If Data is a time-domain iddata object with real-valued signals and with constant sampling interval Ts, Datf is returned as a frequency-domain iddata object with the frequency values equally distributed from frequency 0 to the Nyquist frequency. Whether the Nyquist frequency actually is included or not depends on the signal length (even or odd). Note that the FFTs are normalized by dividing each transform by the square root of the signal length. That is in order to preserve the signal power and noise level. |
|  | In the default case, the length of the transformation is determined by the signal length. A second argument N will force FFT transformations of length $N$, padding with zeros if the signals in Data are shorter and truncating otherwise. Thus the number of frequencies in the real signal case will be $N / 2$ or ( $N+1$ )/2. If Data contains several experiments, $N$ can be a row vector of corresponding length. |
|  | For real signals, the default is that Datf only contains nonnegative frequencies. For complex-valued signals, negative frequencies are also included. To enforce negative frequencies in the real case, add a last argument, 'Complex'. |

## See Also <br> iddata <br> ifft

## findop(idnlarx)

Purpose
Syntax
Description

Input

Compute operating point for nonlinear ARX model

```
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)
```

$[\mathrm{X}, \mathrm{U}]=$ findop(SYS, 'steady', InputLevel,OutputLevel) computes operating-point state values, $X$, and input values, $U$, from steady-state specifications for an idnlarx model. For more information about the states of an idnlarx model, see "Definition of idnlarx States" on page 2-189.
$[\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}, \mathrm{SPEC})$ computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
[X,U] = findop(SYS,'snapshot', T,UIN,XO) computes the operating point at a simulation snapshot of time $T$ using the specified input and initial state values.
[ $X, \mathrm{U}, \mathrm{REPORT}]=$ findop(...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, ..., PVPairs) specifies property-value pairs for setting algorithm options.

- SYS: idnlarx (nonlinear ARX) model.
- 'steady': Computes operating point using steady-state input and output levels.
- 'snapshot': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown.
- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC(SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec (idnlarx) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.

- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.


## Output

- X : Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the $\infty$-norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.


## findop(idnlarx)

Algorithm
findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

## Computing the Operating Point from Steady-State Specifications

You specify to compute the steady-state operating point by calling findop in either of the following ways:

```
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
```

When you use the syntax [ $\mathrm{X}, \mathrm{U}$ ] = findop(SYS, 'steady', InputLevel,OutputLevel), the algorithm assumes the following operating-point specifications:

- All finite input values are fixed values. Any NaN values specify an unknown input signal with the initial guess of 0 .
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of 0 .
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax $[\mathrm{X}, \mathrm{U}]=$ findop(SYS, SPEC), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).

To compute the states, X , and the input, U , of the steady-state operating point, findop uses the algorithm specified in the SearchMethod property of MODEL.Algorithm to minimize the norm of the error $e(t)=$ $y(t)-f(x(t), u(t))$, where $f$ is the nonlinearity estimator, $x(t)$ are the model states, and $u(t)$ is the input.

The algorithm uses the following independent variables for minimization:

- Unknown (unspecified) inputs


## findop(idnlarx)

- Output signals

Because the states of a nonlinear ARX (idnlarx) model are delayed samples of the input and output variables, the values of all the states are the constant values of the corresponding steady-state inputs and outputs. For more information about the definition of nonlinear ARX model states, see "Definition of idnlarx States" on page 2-189.

## Computing the Operating Point at a Simulation Snapshot

When you use the syntax [X,U] = findop(SYS, 'snapshot', T,UIN,X0), the algorithm simulates the model output until the snapshot time, T. At the snapshot time, the algorithm passes the input and output samples to the data2state command to map these values to the current state vector.

Note For snapshot-based computations, findop does not perform numerical optimization.

Examples In this example, you compute the operating point of an idnlarx model for a steady-state input level of 1 .

1 Estimate an idnlarx model from sample data iddata2.

```
load iddata2;
M = nlarx(z2,[4 3 2],'wavenet');
```

2 Compute the steady-state operating point for an input level of 1.

$$
\text { x0 = findop(M,'steady', } 1, \mathrm{NaN} \text { ) }
$$

## findop(idnlarx)

See Also<br>data2state(idnlarx)<br>operspec(idnlarx)<br>sim(idnlarx)

## findop(idnlhw)

## Purpose

Compute operating point for Hammerstein-Wiener model
Syntax

```
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
[X,U] = findop(SYS,'snapshot',T,UIN,XO)
[X,U,REPORT] = findop(...)
findop(SYS,...,PVPairs)
```


## Description

## Input

[X,U] = findop(SYS,'steady',InputLevel,OutputLevel) computes operating-point state values, $X$, and input values, $U$, from steady-state specifications for an idnlhw model. For more information about the states of an idnlhw model, see "idnlhw States" on page 2-223.
$[X, U]=$ findop(SYS,SPEC) computes the equilibrium operating point using the specifications in the object SPEC. Whereas the previous command only lets you specify the input and output level, SPEC provides additional specification for computing the steady-state operating point.
$[\mathrm{X}, \mathrm{U}]=\mathrm{findop}(\mathrm{SYS}$, 'snapshot', $\mathrm{T}, \mathrm{UIN}, \mathrm{XO})$ computes the operating point at a simulation snapshot of time T using the specified input and initial state values.
[ $\mathrm{X}, \mathrm{U}, \mathrm{REPORT}]=$ findop(...) creates a structure, REPORT, containing information about the algorithm for computing an operating point.
findop(SYS, ..., PVPairs) specifies property-value pairs for setting algorithm options.

- SYS: idnlhw (Hammerstein-Wiener) model.
- 'steady': Computes operating point using steady-state input and output levels.
- 'snapshot': Computes operating point at simulating snapshot of model SYS at time T.
- InputLevel: Steady-state input level for computing operating point. Use NaN when the value is unknown. Do not enter OutputLevel when InputLevel does not contain any NaN values.


## findop(idnlhw)

- OutputLevel: Steady-state output level for computing the operating point. Use NaN when the value is unknown.
- SPEC: Operating point specifications object. Use SPEC = OPERSPEC (SYS) to construct the SPEC object for model SYS. Then, configure SPEC options, such as signal bounds, known values, and initial guesses. See operspec(idnlhw) for more information.
- T: Simulation snapshot time at which to compute the operating point.
- UIN: Input for simulating the model. UIN is a double matrix or an iddata object. The number of input channels in UIN must match the number of SYS inputs.
- XO: Initial states for model simulation.

Default: Zero.

- PVPairs: Property-value pairs for customizing the model Algorithm property fields, such as SearchMethod, MaxSize, and Tolerance.


## Output

- X: Operating point state values.
- U: Operating point input value.
- REPORT: Structure containing the following fields:
- SearchMethod: String indicating the value of the SearchMethod property of MODEL.Algorithm.
- WhyStop: String describing why the estimation stopped.
- Iterations: Number of estimation iterations.
- FinalCost: Final value of the sum of squared errors that the algorithm minimizes.
- FirstOrderOptimality: Measure of the gradient of the search direction at the final parameter values when the search algorithm terminates. It is equal to the $\infty$-norm of the gradient vector.
- SignalLevels: Structure containing fields Input and Output, which are the input and output signal levels of the operating point.


## findop(idnlhw)

## Algorithm

findop computes the operating point from steady-state operating point specifications or at a simulation snapshot.

## Computing the Operating Point from Steady-State Specifications

You specify to compute the steady-state operating point by calling findop in either of the following ways:

```
[X,U] = findop(SYS,'steady',InputLevel,OutputLevel)
[X,U] = findop(SYS,SPEC)
```

When you use the syntax $[\mathrm{X}, \mathrm{U}]=$ findop(SYS, 'steady', InputLevel, OutputLevel), the algorithm assumes the following operating-point specifications:

- All finite input values are fixed values. Any NaN values specify an unknown input signal with the initial guess of 0 .
- All finite output values are initial guess values. Any NaN values specify an unknown output signal with the initial guess of 0 .
- The minimum and maximum bounds have default values (-/+ Inf) for both Input and Output properties in the specification object.

Using the syntax $[\mathrm{X}, \mathrm{U}]=$ findop(SYS, SPEC), you can specify additional information, such as the minimum and maximum constraints on the input/output signals and whether certain inputs are known (fixed).
findop uses a different approach to compute the steady-state operating point depending on how much information you provide for this computation:

- When you specify values for all input levels (no NaN values). For a given input level, $U$, the equilibrium state values are $X=$ $\operatorname{inv}(I-A) * B^{*} f(U)$, where $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]=$ ssdata(model.LinearModel), and $f()$ is the input nonlinearity.


## findop(idnlhw)

- When you specify known and unknown input levels. findop uses numerical optimization to minimize the norm of the error and compute the operating point. The total error is the union of contributions from $e_{1}$ and $e_{2}, e(t)=\left(e_{1}(t) e_{2}(t)\right)$, such that:
- $e_{1}$ applies for known outputs and the algorithm minimizes $e_{1}=y$ $g(L(x, f(u)))$, where $f$ is the input nonlinearity, $L(x, u)$ is the linear model with states $x$, and $g$ is the output nonlinearity.
- $e_{2}$ applies for unknown outputs and the error is a measure of whether these outputs are within the specified minimum and maximum bounds. If a variable is within its specified bounds, the corresponding error is zero. Otherwise, the error is equal to the distance from the nearest bound. For example, if a free output variable has a value $z$ and its minimum and maximum bounds are $L$ and $U$, respectively, then the error is $e_{2}=\max [z-U, L-z, 0]$.
The independent variables for the minimization problem are the unknown inputs. In the error definition $e$, both the input $u$ and the states $x$ are free variables. To get an error expression that contains only unknown inputs as free variables, the algorithm findop specifies the states as a function of inputs by imposing steady-state conditions: $x=\operatorname{inv}(I-\mathrm{A}) * \mathrm{~B}^{*} f(\mathrm{U})$, where $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]$ are state-space parameters corresponding to the linear model $L(x, u)$. Thus, substituting $x=$ $\operatorname{inv}(I-A) * B^{*} f(\mathrm{U})$ into the error function results in an error expression that contains only unknown inputs as free variables computed by the optimization algorithm.


## Computing the Operating Point at a Simulation Snapshot

When you use the syntax $[X, U]=$
findop(SYS, 'snapshot', T, UIN, XO), the algorithm simulates the model output until the snapshot time, T. At the snapshot time, the algorithm computes the inputs for the linear model block of the Hammerstein-Wiener model (LinearModel property of the idnlhw object) by transforming the given inputs using the input nonlinearity: $w$ $=f(u)$. findop uses the resulting $w$ to compute x until the snapshot time using the following equation: $x(\mathrm{t}+1)=A x(\mathrm{t})+B w(\mathrm{t})$, where $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}]$ $=$ ssdata(model.LinearModel).

## findop(idnlhw)

> Note For snapshot-based computations, findop does not perform numerical optimization.

## Examples

In this example, you compute the operating point of an idnlhw model for a steady-state input level of 1 .

1 Estimate an idnlhw model from sample data iddata2.

```
load iddata2;
M = nlhw(z2,[4 3 2],'wavenet','pwl');
```

2 Compute the steady-state operating point for an input level of 1.

```
x0 = findop(M,'steady',1,NaN)
```

See Also
findstates(idnlhw)
operspec(idnlhw)
sim(idnlhw)

## findstates(idmodel)

## Purpose Estimate initial states of linear model from data

| Syntax | XO $=$ findstates $($ MODEL, DATA $)$ |
| :--- | :--- |
|  | XO $=$ findstates $($ MODEL, DATA, INIT $)$ |

Description $\quad$ XO $=$ findstates (MODEL, DATA) estimates the initial states of MODEL that provide the best fit to output signal in DATA.
XO = findstates(MODEL, DATA, INIT) specifies how the initial states should be estimated using the flag INIT.

- MODEL: idmodel object. If MODEL is not in state-space form, initial states must be interpreted as state values corresponding to idss(MODEL).
- DATA: iddata object with matching input/output dimensions.
- INIT: Flag indicating how the initial states should be estimated. This flag can have the following values:
- 'e': (Default) Estimate initial state so that the norm of prediction error is minimized.
- 'd': (Only available for discrete-time models) Same as 'e', but if MODEL. InputDelay is non-zero, these delays are first converted to explicit model delays, and the extra initial states (those corresponding to the delays) are also estimated and returned.


## Output

## Examples

In this example you estimate an idpoly model and simulate it such that the response of the estimated model matches the estimation data's output signal as closely as possible.

1 Load sample data.

```
load iddata1 % estimation data z1;
```

2 Estimate a linear model from the data.

```
model = arx(z1, [2 2 1]); % idpoly model
```

3 Estimate the value of the initial states to best fit the measured output z1.y.

```
x0est = findstates(model, z1);
```

4 Simulate the model.

```
sim(model, z1.u, 'init', x0est)
```

See Also
compare
pe
sim

## findstates(idnlarx)

## Purpose

Estimate initial states of nonlinear ARX model from data

Syntax
Description

Input

XO = findstates(MODEL, DATA)
XO = findstates(MODEL,DATA, XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM)
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs) [XO, REPORT] = findstates(...)

XO = findstates(MODEL, DATA) estimates the initial states of an idnlarx model that minimize the error between the output measurements in DATA and the predicted output of the model. The states of an idnlarx model are defined as the delayed samples of input and output variables. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-189.

XO = findstates(MODEL,DATA, XOINIT) specifies an initial guess for estimating the initial states.

XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM) allows switching between prediction-error (default) and simulation-error minimization.

```
XO = findstates(MODEL,DATA,XOINIT,PRED_OR_SIM,PVPairs)
``` lets you specify the algorithm properties that control the numerical optimization process as property-value pairs.
[XO, REPORT] = findstates(...) creates a report to summarize results of numerical optimization that is performed to search for the model states.
- MODEL: idnlarx model.
- DATA: iddata object from which to estimate the initial states of MODEL.
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL (sum (getDelayInfo(MODEL))).
- PRED_OR_SIM: Specifies minimization criteria using one of the following values:

\section*{findstates(idnlarx)}
- 'prediction': (Default) Estimation of initial states by minimizing the difference between the measured output data and 1 -step-ahead predicted response of the model.
- 'simulation': Estimation of initial states by minimizing the difference between the measured output and the simulated response of the model. This estimation algorithm can be slower than 'prediction'.
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL.Algorithm properties using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.

\section*{Output}
- XO: Estimated initial state vector corresponding to time DATA. TStart. For multi-experiment data, XO is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop': String describing why the estimation was stopped.
- 'Iterations ': Number of iterations carried out during estimation.
- 'FinalCost': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

\section*{findstates(idnlarx)}

\section*{Examples Estimating Initial States}

In this example, you use sample data \(z 1\) to create a nonlinear ARX model. You use findstates to compute the initial states of the model such that the difference between the predicted output of the model and the output data in \(z 2\) is minimized.

1 Load the sample data and create two data objects z1 and z2.
```

load twotankdata
% Create data objects z1 and z2.
z = iddata(y,u,0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

```

2 Estimate the idnlarx model.
```

% Estimate a nonlinear ARX model from data in z1.
mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

```

3 Estimate the initial states of the model.
```

% Find the initial states X0 of mw1 that minimize
% the error between the output data of z2 and the
% simulated output of mw1.
XO = findstates(mw1,z2,[],'sim')

```

\section*{Estimating Initial States for Multiple-Experiment Data}

In this example, you estimate the initial states for each data set in a multiple-experiment data object.

1 Create a multi-experiment data set from z1 and z2:
```

% Create a multi-experiment data set.
zm = merge(z1,z2);

```

2 Estimate the initial states for each experiment in the data set, such that the one-step-ahead prediction error is minimized for each data set.
```

% Estimate initial states for each data set in zm.
XO = findstates(mw1,zm)

```

See Also
data2state(idnlarx)
getDelayInfo
findop(idnlarx)
findstates(idmodel)
findstates(idnlhw)

\section*{findstates(idnlgrey)}
```

Purpose Estimate initial states of nonlinear grey-box model from data
Syntax
XO = findstates(NLSYS, DATA);
[XO,ESTINFO] = findstates(NLSYS,DATA);
[XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT);

```

XO = findstates(NLSYS, DATA) ; estimates the initial states of an idnlgrey model from given data. For more information about the states of idnlgrey models, see "Definition of idnlgrey States" on page 2-209.
[XO,ESTINFO] = findstates(NLSYS,DATA) ; returns basic information about the estimation.
[XO,ESTINFO] = findstates(NLSYS,DATA,XOINIT); specifies an initial guess for XO .
- NLSYS: idnlgrey model whose output is to be predicted.
- DATA: Input/output data DATA = [Y U], where U and Y are the following:
- U: Input data that can be given either as an iddata object or as a matrix \(U=\left[\right.\) U1 U2 \(\ldots . . \mathrm{Um}\) ], where the \(k^{\text {th }}\) column vector is input Uk
- Y: Either an iddata object or a matrix of outputs (with as many columns as there are outputs).

Note For time-continuous idnlgrey models, DATA passed as a matrix will cause the data sample interval \(T s\) to be assumed to be equal to 1 .
- XOINIT: Initial state strategy to use:
- 'zero': Use zero initial state and estimate all states (NLSYS.InitialStates.Fixed is thus ignored). Notice that all states are estimated, whereas they are fixed in predict.

\section*{findstates(idnlgrey)}
- 'estimate': NLSYS.InitialStates determines the values of the states, but all initial states are estimated (NLSYS.InitialStates.Fixed is thus ignored).
- 'model': (Default) NLSYS.InitialStates determines the values of the initial states, which initial states to estimate, as well as their maximum and minimum values.
- vector/matrix: Column vector of appropriate length to be used as an initial guess for initial states. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. With this option, all initial states are estimated (and not fixed as in predict) (NLSYS.InitialStates.Fixed is thus ignored).
- struct array: Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments).
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- Fixed: Boolean 1-by-Ne vector, or a scalar Boolean (applicable for all states) specifying whether the initial state is fixed or not.

\section*{Output}
- XO: Matrix containing the initial states. In the single experiment case it is a column vector of length \(N x\). For multi-experiment data, XO is a matrix with as many columns as there are experiments.
- ESTINFO: Structure or Ne-by-1 structure array containing basic information about the estimation result (some of the fields normally stored in NLSYS.EstimationInfo). For multi-experiment data,

\section*{findstates(idnlgrey)}

ESTINFO is an Ne -by- 1 structure array with elements providing initial state estimation information related to each experiment.

\section*{Examples Estimating Individual Initial States Selectively}

In this example you estimate the initial states of a model selectively, fixing the first state and allowing the second state of the model to be estimated. First you create a model from sample data and set the Fixed property of the model such that the second state is free and the first is fixed.

1 Specify the file describing the model structure, the model orders, and model parameters.
```

% Specify the file describing the model structure:
FileName = 'dcmotor_m';
% Specify the model orders [ny nu nx]
Order = [2 1 2];
% Specify the model parameters
% (see idnlgreydemo1 for more information)
Parameters = [0.24365; 0.24964];

```

2 Estimate the model parameters and set the model properties:
```

nlgr = idnlgrey(FileName, Order, Parameters);
set(nlgr, 'InputName', 'Voltage','OutputName', ...
{'Angular position', 'Angular velocity'});

```

3 Free the second state while keeping the first one fixed.
```

setinit(nlgr,'Fixed',{1 0});

```

4 Load the estimation data.
```

load(fullfile(matlabroot,'toolbox','ident',...
'iddemos','data','dcmotordata'));
z = iddata(y,u,0.1,'Name','DC-motor',...
'InputName', 'Voltage', 'OutputName',...
{'Angular position','Angular velocity'});

```

\section*{findstates(idnlgrey)}

5 Estimate the free states of the model.
[XO,EstInfo] = findstates(nlgr,z)

\section*{Estimating Initial States Starting from States Stored in Model}

This example shows how you can estimate all of the initial states, starting from the initial state 0 , then from the initial states stored in the model nlgr, and finally using a numerical initial states vector as the initial guess.

1 Estimate all the initial states starting from 0.
```

XO = findstates(nlgr,z,'zero');

```

2 Estimate the free initial states specified by nlgr, starting from the initial state stored in nlgr.
```

XO = findstates(nlgr, z, 'mod');

```

3 Estimate all the initial states, starting from an initial state vector that you specify.
```

nlgr.Algorithm.Display = 'full';
% Starting from an initial state vector [10;10]
XO = findstates(nlgr,z,[10;10])

```

\section*{Advanced Use of findstates(idnlgrey)}

The following example shows advanced use of findstates. Here you estimate states for multi-experiment data, such that the states of model nlgr are estimated separately for each experiment. After creating a 3 -experiment data set \(z 3\), you estimate individual initial states separately.

1 Create a three-experiment data set.

\section*{findstates(idnlgrey)}
```

z3 = merge(z, z, z); % 3-experiment data

```

2 Fix some initial states and only estimate the free initial states starting of with the initial state in nlgr. This means that both elements of state vector 1 will be estimated, that no state of the second state vector will be estimated, and that only the first state of state vector 3 is estimated.
```

% prepare model for 3-experiment data
nlgr = pem(z3, nlgr, 'Display', 'off');

```

3 Specify which initial states to fix, and set the Display property of Algorithm to 'full'.
```

nlgr.InitialStates(1).Fixed = [true false true];
nlgr.InitialStates(2).Fixed = [true false false];
nlgr.Algorithm.Display = 'full';

```

4 Estimate the initial states and obtain information about the estimation.
```

[XO, EstInfo] = findstates(nlgr, z3);

```

See Also
```

findstates(idnlarx)
findstates(idnlhw)
predict
sim

```

\section*{findstates(idnlhw)}
\begin{tabular}{|c|c|}
\hline Purpose & Estimate initial states of nonlinear Hammerstein-Wiener model from data \\
\hline Syntax & ```
XO = findstates(MODEL,DATA)
XO = findstates(MODEL,DATA,XOINIT)
XO = findstates(MODEL,DATA,XOINIT,PVPairs)
[XO, REPORT] = findstates(...)
``` \\
\hline Description & \begin{tabular}{l}
XO = findstates(MODEL, DATA) estimates the initial states of an idnlhw model from given data. The states of an idnlhw model are defined as the states of its embedded linear model (Model.LinearModel) For more information about the states of idnlhw models, see "idnlhw States" on page 2-223. \\
XO = findstates(MODEL, DATA, XOINIT) specifies an initial guess for value of XO using XOINIT. \\
XO = findstates(MODEL,DATA,XOINIT,PVPairs) specifies property-value pairs representing the algorithm properties that control the numerical optimization process. \\
[XO, REPORT] = findstates(...) creates a report to summarize results of numerical optimization that is performed to search for the model states.
\end{tabular} \\
\hline Input & \begin{tabular}{l}
- MODEL: idnlhw model. \\
- DATA: iddata object from which to estimate the initial states of MODEL. \\
- XOINIT: Initial guess for value of XO. Must be a vector of length equal to the number of the states of MODEL. \\
- PVPairs: Property-value pairs that specify the algorithm properties that control numerical optimization process. By default, algorithm properties are read from the Algorithm property of MODEL. You can override MODEL. Algorithm properties using property-value pairs. For example you might set SearchMethod, MaxSize, Tolerance, and Display.
\end{tabular} \\
\hline
\end{tabular}

\section*{findstates(idnlhw)}

\section*{Output}
- XO: Estimated initial state vector corresponding to time DATA. TStart. For multi-experiment data, XO is a matrix with as many columns as there are experiments.
- REPORT: Structure containing the following fields:
- 'EstimationCriterion': String containing the minimization method used.
- 'SearchMethod': String indicating the value of the SearchMethod property of MODEL.Algorithm.
- 'WhyStop': String describing why the estimation was stopped.
- 'Iterations': Number of iterations carried out during estimation.
- 'FinalCost': The final value of the sum of squared errors that the search method attempts to minimize
- 'FirstOrderOptimality': Measure of the gradient of the search direction at the final value of the parameter set when the search algorithm terminates. It is equal to the \(\infty\)-norm of the gradient vector.

\section*{Examples}

In this example, you create an idnlarx model from sample data and estimate initial states using another data set. Next you jointly estimate the states for separate data sets contained in multi-experiment data.

1 Load the data and create iddata objects z1 and z2.
```

load twotankdata
z = iddata(y, u, 0.2,'Name','Two tank system');
z1 = z(1:1000); z2 = z(1001:2000);

```

2 Estimate an idnlhw model from data.
```

m1=nlhw(z1,[4 2 1], 'unitgain' , 'pwlinear')

```

3 Estimate the initial states of m 1 using data \(z 2\).

\section*{findstates(idnlhw)}
```

% Estimate initial states. View estimation trace and use
% only 5 iterations in the search algorithm
X0 = findstates(m1,z2,[],'MaxIter',5,'Display','on')

```

4 Estimate states using multiple-experiment data. There are separate sets of initial states for each experiment. The states of all data experiments are jointly estimated, and X 0 is returned as a matrix with as many columns as there are data experiments.
```

zm = merge(z1,z2);
XO = findstates(m1, zm)

```

\section*{See Also}
```

findstates(idnlarx)
findstates(idmodel)
findop(idnlhw)

```

\title{
Purpose Convert idfrd objects to Control System Toolbox frequency-response LTI model \\ Syntax \\ sys \(=f r d(m o d)\) \\ Description \\ mod is an idfrd object. sys is returned as an frd object. \\ The fields Frequency, ResponseData, Units, Ts, InputDelay,InputName, OutputName and Notes in mod are transferred tosys. The remaining fields (SpectrumData, CovarianceData andNoiseCovariance) are ignored. The command, therefore, cannot beapplied to a time-series idfrd model object.
}
See Also SStfzpk
\begin{tabular}{|c|c|}
\hline Purpose & Frequency response data from linear models \\
\hline Alternative & idfrd computes the same information as freqresp and stores it in the idfrd model object. \\
\hline Syntax & ```
H = freqresp(m)
[H,w,covH] = freqresp(m,w)
``` \\
\hline Description & \begin{tabular}{l}
\(H=\) freqresp \((m)\) returns the frequency response \(H\) of the model \(m\) at default frequencies determined from the dynamics of the model. For idmodel models, computes the frequency response of the model. For idfrd models, extracts the frequency data from the model object. If \(m\) contains nonzero delays (stored as m. InputDelay), these delays are absorbed into the returned frequency response. \\
\([H, w, \operatorname{covH}]=\) freqresp \((m, w)\) returns the frequency response \(H\) of the model m \\
at frequencies w. For idfrd models with input channels, the frequency response is \(\mathrm{H}=\mathrm{m}\). ResponseData and the covariance of the response is covH = m.CovarianceData. For time-series idfrd models (power spectra), the frequency response is \(\mathrm{H}=\mathrm{m}\). SpectrumData and the covariance of the response is covH \(=\mathrm{m}\). NoiseCovariance.
\end{tabular} \\
\hline
\end{tabular}

Tip For a SISO model, use H(:) to obtain a vector of the frequency response. If models containing input channels, you can get the spectrum information of the noise (output disturbance) signal using freqresp(m('n')).

\section*{Inputs}
m
Name of the idmodel or idfrd model object.

Frequencies for computing the frequency response, specified as a vector of real values in rad/s.

Note If you do not specify w, freqresp returns the frequency response at default frequencies determined from the dynamics of the model.

\section*{Outputs}

H
Frequency response data of the model.
If \(m\) has ny outputs and nu inputs, and \(w\) contains \(N w\) frequencies, the output \(H\) is an ny-by-nu-by-Nw array such that \(H(:,:, k)\) is a complex-valued response at frequency w(k).
w
Frequencies of the response, returned as a vector of real values in rad/s.
covH
For a model with input channels, covariance of the response of a model that is a 5 -D array. \(\operatorname{covH}(k y, k u, k,:,:)\) is the 2 -by- 2 covariance matrix of the response from the input ku to the output \(k y\) at frequency \(w(k)\). The \((1,1)\) element is the variance of the real part, the \((2,2)\) element is the variance of the imaginary part, and the \((1,2)\) and \((2,1)\) elements are the covariance between the real and imaginary parts.

Tip squeeze(covH(ky,ku,k,:,:)) returns the covariance matrix of the corresponding response.

For a time-series model (no input channels), H is an ny-by-ny-by-Nw array of the power spectrum of the outputs. Thus, \(H(:,:, k)\) is the spectrum matrix at frequency \(w(k)\). The element \(H(k 1, k 2, k)\) is the cross spectrum between outputs k 1 and k 2 at frequency \(w(k)\). When \(k 1=k 2\), this is the real-valued power spectrum of output k1.
covH is then the covariance of the estimated spectrum H such that \(\operatorname{covH}(\mathrm{k} 1, \mathrm{k} 1, \mathrm{k})\) is the variance of the power spectrum estimate of output k1 at frequency \(w(k)\). No information about the variance of the cross spectra is given; that is, \(\operatorname{covH}(\mathrm{k} 1, \mathrm{k} 2, \mathrm{k})=0\) for k 1 not equal to k 2 .

\author{
See Also \\ bode \\ etfe \\ ffplot \\ idfrd \\ nyquist \\ spa \\ spafdr
}

\section*{Purpose Akaike Final Prediction Error for estimated model}
```

Syntax fp = fpe(Model1,Model2,Model3, ...)

```

Description Model is the name of an idarx, idgrey, idpoly, idproc, idss, idnlarx, idnlhw, or idnlgrey model object.
fp is returned as a row vector containing the values of the Akaike Final Prediction Error (FPE) for the different models.

\section*{Definition}

Akaike's Final Prediction Error (FPE) criterion provides a measure of model quality by simulating the situation where the model is tested on a different data set. After computing several different models, you can compare them using this criterion. According to Akaike's theory, the most accurate model has the smallest FPE.

Note If you use the same data set for both model estimation and validation, the fit always improves as you increase the model order and, therefore, the flexibility of the model structure.

Akaike's Final Prediction Error (FPE) is defined by the following equation:
\[
F P E=V\left(\frac{1+d / N}{1-d / N}\right)
\]
where \(V\) is the loss function, \(d\) is the number of estimated parameters, and \(N\) is the number of values in the estimation data set.

The toolbox assumes that the final prediction error is asymptotic for \(d \ll N\) and uses the following approximation to compute FPE:
\[
F P E=V(1+2 d / N)
\]

The loss function \(V\) is defined by the following equation:
\[
V=\operatorname{det}\left(\frac{1}{N} \sum_{1}^{N} \varepsilon\left(t, \theta_{N}\right)\left(\varepsilon\left(t, \theta_{N}\right)\right)^{T}\right)
\]
where \(\theta_{N}\) represents the estimated parameters.

\section*{References \(\quad\) Sections 7.4 and 16.4 in Ljung (1999).}

\section*{See Also \\ EstimationInfo \\ aic}

Purpose Frequencies from frequency response data
```

Syntax idfm = fselect(idf,index)
idfm = fselect(idf,Fmin,Fmax)

```

Description idf is any idfrd object. index is a row vector of frequency indices, so that idfm is the idfrd object that contains the response at frequencies idf. Frequency (Index).

If Fmin and Fmax are specified, idfm contains responses at frequencies between Fmin and Fmax.

Note that the operation is the same as dat (index) for an iddata object.

\section*{Examples \\ Select every fifth frequency:}
```

idfm = fselect(idf,5:5:100)

```

Select the response in the third quadrant:
```

ph = angle(squeeze(idf.response));
idfm = fselect(idf,find(ph>-pi \& ph <-pi/2))

```

\section*{See Also \\ fcat \\ iddata \\ idfrd}

\section*{Purpose}

Query properties of data and model objects
Syntax
Value \(=\) get (m,'PropertyName')
get (m)
Struct \(=\) get(m)

\section*{Description}
value \(=\) get (m,'PropertyName') returns the current value of the property PropertyName of the iddata object or idfrd object, or idmodel object (idgrey, idarx, idpoly, idss), or idnlgrey, idnlarx, or idnlhw model object.

The string 'PropertyName' can be the full property name (for example, 'SSParameterization') or any unambiguous case-insensitive abbreviation (for example, 'ss').

Struct \(=\) get \((\mathrm{m})\) converts the object \(m\) into a standard MATLAB structure with the property names as field names and the property values as field values.
Without an output argument
```

get(m)

```
displays all properties of \(m\) and their values.

\section*{Remarks An alternative to the syntax}
Value = get(m,'PropertyName')
is the structure-like referencing
Value = m.PropertyName
See Also Algorithm Properties
idarx ..... idfrd
idgrey
idnlarx
idnlgrey
idnlhw
idpoly
idproc
idss

\section*{Purpose}

Get input/output delay information for idnlarx model structure
Syntax
DELAYS = getDelayInfo(MODEL)
DELAYS = getDelayInfo(MODEL,TYPE)

DELAYS = getDelayInfo(MODEL) obtains the maximum delay in each input and output variable of an idnlarx model.
DELAYS = getDelayInfo(MODEL, TYPE) lets you choose between obtaining maximum delays across all input and output variables or maximum delays for each output variable individually. When delays are obtained for each output variable individually a matrix is returned, where each row is a vector containing \(n_{y}+n_{u}\) maximum delays for each output variable, and:
- \(n_{y}\) is the number of outputs of MODEL.
- \(n_{u}\) is the number of inputs of MODEL.

Delay information is useful for determining the number of states in the model. For nonlinear ARX models, the states are related to the set of delayed input and output variables that define the model structure (regressors). For example, if an input or output variable \(p\) has a maximum delay of \(D\) samples, then it contributes \(D\) elements to the state vector:
\(p(t-1), p(t-2), \ldots p(t-D)\)
The number of states of a nonlinear ARX model equals the sum of the maximum delays of each input and output variable. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-189

\section*{Input}
getDelayInfo accepts the following arguments:
- MODEL: idnlarx model.
- TYPE: (Optional) Specifies whether to obtain channel delays 'channelwise' or 'all' as follows:
- 'all': Default value. DELAYS contains the maximum delays across each output (vector of \(n_{y}+n_{u}\) entries, where [ny, nu] = size (MODEL)).
- 'channelwise': DELAYS contains delay values separated for each output ( \(n_{y}\)-by- \(\left(n_{y}+n_{u}\right)\) matrix).

\section*{Output}

\section*{Examples}
- DELAYS: Contains delay information in a vector of length \(n_{y}+n_{u}\) arranged with output channels preceding the input channels, i.e., [y1, y2,.., u1, u2,..].

In the following example you create a 2 -output, 3 -input nonlinear ARX model, then verify the number of delays using getDelayInfo.

1 Create an idnlarx model.
```

M = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0],...
'linear');

```

2 Compute the maximum delays for each output variable individually.
```

Del = getDelayInfo(M,'channelwise')
Del =

2	0	2	1	0
1	0	1	5	0

```

The matrix Del contains the maximum delays for the first and second output of the model M. You can interpret the contents of matrix Del as follows:
- In the dynamics for the output \(1\left(y_{1}\right)\) of model M , the maximum delays for each input/output channel are as follows: \(y_{1}: 2, y_{2}: 0, u_{1}: 2, u_{2}\) : 1 , \(u_{3}: 0\).
- Similarly, in the dynamics for the output \(2\left(y_{2}\right)\) of the model, the maximum delays in channels \(y_{1}, y_{2}, u_{1}, u_{2}, u_{3}\) are \(1,0,1,5\), and 0 respectively.

You can find the maximum delays for all the input and output variables in the order ( \(y_{1}, y_{2}, u_{1}, u_{2}, u_{3}\) ) by executing the command
```

Del=getDelayInfo(M, 'all')

```
which returns
Del =
\begin{tabular}{lllll}
2 & 0 & 2 & 5 & 0
\end{tabular}

Note The maximum delay across all output equations can be obtained by executing MaxDel \(=\max (\operatorname{Del},[], 1)\). Since input \(u_{2}\) has 5 delays (the 4th entry in Del, there are 5 terms corresponding to \(u_{5}\) in the state vector ( \(\left(u_{5}(t-1), \ldots u_{5}(t-5)\right.\). Applying this definition to all I/O channels, the complete state vector for model M becomes:
\(X(t)=\left[y_{1}(t-1), y_{1}(t-2), u_{1}(t-1), u_{1}(t-2), u_{2}(t-1), u_{2}(t-2), u_{2}(t-3), u_{2}(t-4)\right.\), \(\left.u_{2}(t-5)\right]\)

\section*{See Also}
```

data2state(idnlarx)
getreg
idnlarx

```

Purpose Specific experiments from multiple-experiment data set
Syntax \(\quad \begin{aligned} d 1 & =\text { getexp (data, ExperimentNumber }) \\ d 1 & =\text { getexp (data, ExperimentName) }\end{aligned}\)
Description
data is an iddata object that contains several experiments. d1 is another iddata object containing the indicated experiment(s). The reference can either be by ExperimentNumber, as in d1 = getexp(data,3) or d1 = getexp(data,[4 2]); or by ExperimentName, as in d1 = getexp(data,'Period1') or d1 = getexp(data,\{'Day1','Day3'\}).

See merge (iddata) and iddata for how to create multiple-experiment data objects.

You can also retrieve the experiments using a fourth subscript, as in d1 = data(:,:,:,ExperimentNumber). Type help iddata/subsref for details on this.
```

Purpose Values of idnlgrey model initial states
Syntax getinit(model)
getinit(model,prop)
Arguments model
Name of the idnlgrey model object.
Property
Name of the InitialStates model property field, such as 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.
Default: 'Value'.
getinit(model) gets the initial-state values in the 'Value' field of the InitialStates model property.
getinit(model, prop) gets the initial-state values of the prop field of the InitialStates model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

```

The returned values are an Nx-by-1 cell array of values, where \(N x\) is the number of states.

\author{
See Also \\ getpar \\ idnlgrey \\ setinit \\ setpar
}

\title{
Purpose Parameter values and properties of idnlgrey model parameters
}
\begin{tabular}{ll} 
Syntax \(\quad\) & getpar(model) \\
& getpar(model, prop)
\end{tabular}

Arguments

Description
model
Name of the idnlgrey model object.
Property
Name of the Parameters model property field, such as 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', or 'Fixed'.

Default: 'Value'.
getpar(model) gets the model parameter values in the 'Value' field of the Parameters model property.
getpar(model, prop) gets the model parameter values in the prop field of the Parameters model property. prop can be 'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.

The returned values are an Np-by-1 cell array of values, where \(N p\) is the number of parameters.

\section*{See Also}
```

getinit
idnlgrey
setinit
setpar

```

\section*{Purpose}

Regressor expressions and numerical values in nonlinear ARX model
Syntax
Rs = getreg(model)
Rs = getreg(model, subset)
Rm = getreg(model, subset, data)
Rm = getreg(model, subset, data,init)

\section*{Inputs}
iddata object containing measured data.
init
Initial conditions of your data:
- 'z' (default) specifies zero initial state.
- Real column vector containing the initial state values. input and output data values at a time instant before the first sample in data. To create the initial state vector from the input-output data, use the data2state method of the idnlarx class. For multiple-experiment data, this is a matrix where each column specifies the initial state of the model corresponding to that experiment.
- iddata object containing input and output samples at time instants before to the first sample in data. When the iddata object contains more samples than the maximum delay in the model, only the most recent samples are used. The minimum number of samples required is equal to max (getDelayInfo(model)).
model
iddata object representing nonlinear ARX model. subset

String that represents a subset of all regressors:
- (Default) 'all' - All regressors.
- 'custom'-Only custom regressors.
- 'input'-Only standard regressors computed from input data.
- 'linear'-Only regressors not used in the nonlinear block.
- 'nonlinear '-Only regressors used in the nonlinear block.

Note You can use 'nl' as an abbreviation of 'nonlinear'.
- 'output'-Only regressors computed from output data.
- 'standard'-Only standard regressors (excluding any custom regressors).

\section*{Outputs \\ Rm}

Matrix of regressor values for all or a specified subset of regressors. Each matrix in Rm contains as many rows as there are data samples. For a model with ny outputs, Rm is an ny-by- 1 cell array of matrices. When data contains multiple experiments, Rm is a cell array where each element corresponds to a matrix of regressor values for an experiment.

Regressor expressions represented as a cell array of strings. For a model with ny outputs, Rs is an ny-by- 1 cell array of cell arrays of strings. For example, the expression 'u1(t-2)' computes the regressor by delaying the input signal u1 by two time samples. Similarly, the expression 'y2(t-1)' computes the regressor by delaying the output signal y2 by one time sample.

The order of regressors in Rs corresponds to regressor indices in the idnlarx object property model.NonlinearRegressors.

\section*{Examples}

Get regressor expressions and values, and evaluate the predicted model output:
```

% Load sample data u and y:
load twotankdata;
Ts = 0.2; % Sampling interval is 0.2 min
% Create data object:
z = iddata(y,u,Ts);
% Use first 1000 samples for estimation:
ze = z(1:1000);
% Estimate nonlinear ARX model
model = nlarx(ze,[3 2 1]);
% Get regressor expressions:
Rs = getreg(model)
% Get regressor values:
Rm = getreg(model,'all',ze)
% Evaluate model output for one-step-prediction:
Y = evaluate(model.Nonlinearity,Rm)
% The previous result is equivalent to:
Y_p = predict(model,ze,1,'z')

```

See Also
addreg | customreg | evaluate | polyreg
How To . "Identifying Nonlinear ARX Models"

\section*{Purpose Data offset and trend information}
```

Syntax T = getTrend(data)
T = getTrend(data,0)
T = getTrend(data,1)

```

\section*{Description}
\(\mathrm{T}=\) getTrend(data) constructs a TrendInfo object to store offset, mean, or linear trend information for detrending or retrending data. You can assign specific offset and slope values to T.

T = getTrend(data, 0) computes the means of input and output signals and stores them as InputOffset and OutputOffset properties of T , respectively.
\(\mathrm{T}=\) getTrend(data, 1 ) computes a best-fit straight line for both input and output signals and stores them as properties of \(T\).

\section*{Examples}

Compute input-output signal means, store them, and detrend the data:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Compute the mean of the data
T = getTrend(data,0)
% Remove the mean from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

```

Remove a specific offset from input and output data signals:
\% Load SISO data containing vectors u2 and y2
load dryer2
\% Create data object with sampling time of 0.08 sec
```

data=iddata(y2,u2,0.08)
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% Plot detrended data on the same plot
hold on
plot(data_d)

```

\section*{See Also}
detrend
retrend
TrendInfo
"Handling Offsets and Trends in Data"

\section*{Purpose}

\section*{Syntax}
```

```
m = idarx(A,B,Ts)
```

```
m = idarx(A,B,Ts)
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)
```

```
m = idarx(A,B,Ts,'Property1',Value1,...,,'PropertyN',ValueN)
```

```

\section*{Description}

Multiple-output ARX polynomials, impulse response, or step response model
idarx creates an object containing parameters that describe the general multiple-input, multiple-output model structure of ARX type.
\[
\begin{aligned}
& y(t)+A_{1} y(t-1)+A_{2} y(t-2)+\ldots+A_{n a} y(t-n a)= \\
& B_{0} u(t)+B_{1} u(t-1)+\ldots+B_{n b} u(t-n b)+e(t)
\end{aligned}
\]

Here \(A_{k}\) and \(B_{k}\) are matrices of dimensions \(n y\)-by-ny and \(n y\)-by-nu, respectively. (ny is the number of outputs, that is, the dimension of the vector \(y(t)\), and \(n u\) is the number of inputs.)

The arguments A and B are 3-D arrays that contain the A matrices and the \(B\) matrices of the model in the following way.
\(A\) is an ny-by-ny-by- \((n a+1)\) array such that:
\[
\begin{aligned}
& A(:,:, k+1)=A k \\
& A(:,:, 1)=\operatorname{eye}(n y)
\end{aligned}
\]

Similarly B is an ny-by-nu-by-(nb+1) array with:
\[
B(:,:, k+1)=B k
\]

Note that A always starts with the identity matrix, and that delays in the model are defined by setting the corresponding leading entries in \(B\) to zero. For a multivariate time series, take B = [].

The optional property NoiseVariance sets the covariance matrix of the driving noise source \(e(t)\) in the model above. The default value is the identity matrix.

The argument Ts is the sampling interval. Note that continuous-time models ( \(\mathrm{Ts}=0\) ) are not supported.

The use of idarx is twofold. You can use it to create models that are simulated (using sim) or analyzed (using bode, pzmap, etc.). You can also use it to define initial value models that are further adjusted to data (using arx). The free parameters in the structure are consistent with the structure of \(A\) and \(B\); that is, leading zeros in the rows of \(B\) are regarded as fixed delays, and trailing zeros in \(A\) and \(B\) are regarded as a definition of lower-order polynomials. These zeros are fixed, while all other parameters are free.

For a model with one output, ARX models can be described both as idarx and idpoly models. The internal representation is different, however.

\section*{idarx Properties}
- A, B: The A and B polynomials as 3-D arrays, described above.
- dA, dB: The standard deviations of A and B. Same format as A and B. Cannot be set.
- na, nb, nk: The orders and delays of the model. na is an ny-by-ny matrix whose \(i\)-j entry is the order of the polynomial corresponding to the \(i\)-j entry of A. Similarly nb is an ny-by-nu matrix with the orders of B . nk is also an ny-by-nu matrix, whose \(i\)-j entry is the delay from input \(j\) to output \(i\), that is, the number of leading zeros in the \(i-j\) entry of B.
- InitialState: This describes how the initial state (initial values in filtering, etc.) should be handled. For time-domain applications, this is typically handled by starting the filtering when all data are available. For frequency-domain data, you must estimate initial states. The possible values of InitialState are 'zero', 'estimate', and 'auto' (which makes a data-dependent choice between zero and estimate).

In addition to these properties, idarx objects also have all the properties of the idmodel object. See idmodel, Algorithm Properties, and EstimationInfo.

Note that you can set and retrieve all properties either with the set and get commands or by subscripts. Autofill applies to all properties and values, and they are case insensitive.

For a complete list of property values, use get (m). To see possible value assignments, use set(m). See also idprops idarx.
idarx Definition of States

\section*{Examples}

The states of an idarx model are defined as those corresponding to the model obtained by converting them to the state-space format using the idss command. For example, if you have an idarx model defined by \(\mathrm{m} 1=\operatorname{idarx}(A, B, 1)\), then the initial states of this model correspond to those of \(\mathrm{m} 2=\) idss \((\mathrm{m} 1)\). The concept of states is useful for functions such as sim, predict, compare and findstates.

Simulate a second-order ARX model with one input and two outputs, and then estimate a model using the simulated data.
```

A = zeros(2,2,3);
B = zeros(2,1,3)
A(:,:,1) =eye(2);
A(:,:,2) = [-1.5 0.1;-0.2 1.5];
A(:,:,3) = [0.7 -0.3;0.1 0.7];
B(:,:,2) = [1;-1];
B(:,:,3) = [0.5;1.2];
m0 = idarx(A,B,1);
u = iddata([],idinput(300));
e = iddata([],randn(300,2));
y = sim(m0,[u e]);
m = arx([y u],[[2 2;2 2],[2;2],[1;1]]);

```

\section*{See Also}

Algorithm Properties

EstimationInfo

\title{
See Also \\ Algorithm Properties | arx | | arxdata | EstimationInfo | idmodel | idpoly
}

How To . "Using Linear Model for Nonlinear ARX Estimation"

\section*{iddata}

Purpose Time- or frequency-domain data
```

Syntax data = iddata(y,[],Ts)
data $=$ iddata($\mathrm{y}, \mathrm{u}, \mathrm{Ts}$)
data = iddata(y,u,Ts,'Frequency', W)
data = iddata(y,u,Ts,'P1',V1,...,'PN',VN)
data $=$ iddata(idfrd_object)

```

\section*{Arguments}
y
Name of MATLAB variable that represents the output signal from a system. Sets the OutputData iddata property. For a single-output system, this is a column vector. For a multiple-output system with \(N_{y}\) output channels and \(N_{T}\) time samples, this is an \(N_{T}\)-by- \(N_{y}\) matrix.

Note Output data must be in the same domain as input data.
u
Name of MATLAB variable that represents the input signal to a system. Sets the InputData iddata property. For a single-input system, this is a column vector. For a multiple-output system with \(N_{u}\) output channels and \(N_{T}\) time samples, this is an \(N_{T}\)-by- \(N_{u}\) matrix.

Note Input data must be in the same domain as output data.

Ts
Time interval between successive data samples in seconds. Default value is 1 . For continuous-time data in the frequency domain, set Ts to 0 .
'P1',V1,...,'PN',VN
Pairs of iddata property names and property values.
```

idfrd_object
Name of idfrd data object.

```

\section*{Description}

\section*{iddata Properties}
data \(=\) iddata( \(\mathrm{y},[\mathrm{]}, \mathrm{Ts}\) ) creates an iddata object for time-series data, containing a time-domain output signal y and an empty input signal [ ], respectively. Ts specifies the sampling interval of the experimental data.
data \(=\) iddata( \(y, u, T s)\) creates an iddata object containing a time-domain output signal \(y\) and input signal \(u\), respectively. Ts specifies the sampling interval of the experimental data.
data = iddata(y,u,Ts,'Frequency', W) creates an iddata object containing a frequency-domain output signal y and input signal \(u\), respectively.Ts specifies the sampling interval of the experimental data. W specifies the iddata property 'frequency' as a vector of frequencies.
data \(=\) iddata(y, \(u, T s, ' P 1\) ', \(V 1, \ldots,{ }^{\prime}\) PN', VN) creates an iddata object containing a time-domain or frequency-domain output signal y and input signal \(u\), respectively. Ts specifies the sampling interval of the experimental data. 'P1', V1, ..., 'PN', VN are property-value pairs, as described in "iddata Properties" on page 2-141.
data = iddata(idfrd_object) transforms an idfrd object to a frequency-domain iddata object.

The following table describes iddata object properties and their values. These properties are specified as property-value arguments 'P1', V1, ..., 'PN' , VN' in the iddata constructor, or you can set them using the set command or dot notation. In the list below, \(N\) denotes the number of data samples in the input and output signals, ny is the number of output channels, nu is the number of input channels, and Ne is the number of experiments.

Tip Property names are not case sensitive. You do not need to type the entire property name. However, the portion you enter must by enough to uniquely identify the property.

\section*{iddata}
\begin{tabular}{l|l|l}
\hline Property Name & Description & Value \\
\hline Domain & \begin{tabular}{l} 
Specifies whether the data \\
is in the time domain or \\
frequency domain.
\end{tabular} & \begin{tabular}{l} 
'Frequency' - \\
Frequency-domain data. \\
- Time' (Default) - \\
Time-domain data.
\end{tabular} \\
\hline ExperimentName & \begin{tabular}{l} 
Name of each data set \\
contained in the iddata \\
object.
\end{tabular} & \begin{tabular}{l} 
For Ne experiments, a \\
1-by-Ne cell array of strings. \\
Each cell contains the \\
name of the corresponding \\
experiment. Default names \\
are \{'Exp1', 'Exp2', ...\}.
\end{tabular} \\
\hline Frequency & \begin{tabular}{l} 
(Frequency-domain data \\
only) Frequency values \\
for defining the Fourier \\
Transforms of the signals.
\end{tabular} & \begin{tabular}{l} 
For a single experiment, this \\
is an N-by-1 vector. For Ne \\
experiments, a 1-by-Ne cell \\
array and each cell contains \\
the frequencies of the \\
corresponding experiment.
\end{tabular} \\
\hline InputData & \begin{tabular}{l} 
Name of MATLAB variable \\
that stores the input signal \\
to a system.
\end{tabular} & \begin{tabular}{l} 
For nu input channels and \\
N data samples, this is an \\
N-by-nu matrix.
\end{tabular} \\
\hline InputName & \begin{tabular}{l} 
Specifies the names of \\
individual input channels.
\end{tabular} & \begin{tabular}{l} 
Cell array of length \\
nu-by-1 contains the \\
name string of each input \\
channel. Default names are \\
\{'u1'; 'u2'; . . \}.
\end{tabular} \\
\hline InputUnit & & \begin{tabular}{l} 
Specifies the units of each \\
input channel.
\end{tabular} \\
\hline \begin{tabular}{l} 
Cell array of length nu-by-1. \\
Each cell contains a string \\
that specifies the units of \\
each input channel.
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Description } & \text { Value } \\ \hline \text { InterSample } & \begin{array}{l}\text { Specifies the behavior of } \\ \text { the input signals between } \\ \text { samples for transformations } \\ \text { between discrete-time and } \\ \text { continuous-time. }\end{array} & \begin{array}{l}\text { For a single experiment: } \\ \text { - zon- (Default) } \\ \text { Zero-order hold } \\ \text { maintains a } \\ \text { piecewise-contant input } \\ \text { signal between samples. } \\ \text { foh- First-order } \\ \text { hold maintains a } \\ \text { piecewise-linear input } \\ \text { signal between samples. }\end{array} \\ \text { - bl- Band-limited } \\ \text { behavior specifies that } \\ \text { the continuous-time } \\ \text { input signal has zero } \\ \text { power above the Nyquist } \\ \text { frequency. }\end{array}\right\}\)

\section*{iddata}
\begin{tabular}{l|l|l}
\hline Property Name & Description & Value \\
\hline OutputName & \begin{tabular}{l} 
For a multiple-output \\
system, specifies the \\
names of individual output \\
channels.
\end{tabular} & \begin{tabular}{l} 
Cell array of length \\
ny-by-1 contains the name \\
string of each output \\
channel. Default names are \\
\{'y1' ; y2' ; . . \}.
\end{tabular} \\
\hline OutputUnit & \begin{tabular}{l} 
Specifies the units of each \\
output channel.
\end{tabular} & \begin{tabular}{l} 
For ny output channels, a \\
cell array of length ny-by-1. \\
Each cell contains a string \\
that specifies the units of \\
the corresponding output \\
channel.
\end{tabular} \\
\hline Period & Period of the input signal. & \begin{tabular}{l} 
(Default) For a nonperiodic \\
signal, set to inf. For a \\
multiple-input signal, this
\end{tabular} \\
is an nu-by-1 vector and \\
the kth entry contains the \\
period of the kth input. \\
For Ne experiments, this \\
is a 1-by-Ne cell array and \\
each cell contains a scalar \\
or vector of periods for the \\
corresponding experiment.
\end{tabular},
\(\left.\begin{array}{l|l|l}\hline \text { Property Name } & \text { Description } & \text { Value } \\
\hline \text { Ts } & \begin{array}{l}\text { Time interval between } \\
\text { successive data samples } \\
\text { in seconds. Must be } \\
\text { specified for both time- } \\
\text { and frequency-domain data. } \\
\text { For frequency-domain, it } \\
\text { is used to compute Fourier } \\
\text { transforms of the signals } \\
\text { as discrete-time Fourier } \\
\text { transforms (DTFT) with the } \\
\text { indicated sampling interval. }\end{array} & \begin{array}{l}\text { Default value is 1. For } \\
\text { continuous-time data in } \\
\text { the frequency domain, } \\
\text { set to 0; the inputs and } \\
\text { outputs are interpreted as } \\
\text { continuous-time Fourier } \\
\text { transforms of the signals. } \\
\text { Note that Ts is essential also } \\
\text { for frequency-domain data, } \\
\text { for proper interpretation of } \\
\text { how the Fourier transforms } \\
\text { were computed: They are } \\
\text { interpreted as discrete-time }\end{array} \\
\text { Fourier transforms } \\
\text { (DTFT) with the indicated } \\
\text { sampling interval.. For } \\
\text { multiple-experiment data, } \\
\text { Ts is a 1-by-Ne cell array } \\
\text { and each cell contains the } \\
\text { sampling interval of the } \\
\text { corresponding experiment. }\end{array}\right] .\)\begin{tabular}{ll} 
Note Your data must be \\
uniformly sampled.
\end{tabular}\(\quad\)\begin{tabular}{l} 
For a single experiment, \\
this is a scalar. For Ne \\
experiments, Tstart is a \\
1-by-Ne cell array and each \\
cell contains the starting \\
time of the corresponding \\
experiment.
\end{tabular}

\section*{iddata}
\begin{tabular}{l|l|l}
\hline Property Name & Description & Value \\
\hline Units & \begin{tabular}{l} 
(Frequency-domain data \\
only) Frequency unit.
\end{tabular} & \begin{tabular}{l} 
Specified as rad/s or Hz.For \\
multiexperiement data with \\
Ne experiments, Units is a \\
1-by-N cell array and each \\
cell contains the frequency \\
unit for each experiment.
\end{tabular} \\
\hline UserData & Additional comments. & Text string. \\
\hline
\end{tabular}

\author{
See Also \\ advice \\ detrend \\ fcat \\ getexp \\ idfilt \\ idfrd \\ plot \\ resample \\ size
}
Purpose Open System Identification Tool GUI
Syntax ident
ident(session, path)
Description ident opens the System Identification Tool GUI.ident (session, path) opens the saved session session in the SystemIdentification Tool GUI. path specifies the location of this file. Omitpath when the session file is on MATLABPATH.
Examples Open a saved session iddata1:

ident('iddata1.sid')
Open a saved session mydata in a specified folder:
```

ident('mydata.sid','\matlab\data\cdplayer\')

```

\author{
See Also \\ midprefs \\ "System Identification Tool GUI"
}

\section*{idfilt}

Purpose

Syntax
Zf = idfilt(Z,filter)
Zf = idfilt(Z,filter, causality)
Zf = idfilt(Z,filter,'FilterOrder',NF)

\section*{Description}

Filter data using user-defined passbands, general filters, or Butterworth filters

Z is the data, defined as an iddata object. Zf contains the filtered data as an iddata object. The filter can be defined in three ways:
- As an explicit system that defines the filter,
```

filter = idm or filter = {num,den} or filter = {A,B,C,D}

```
idm can be any SISO idmodel or LTI model object. Alternatively the filter can be defined as a cell array \(\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\}\) of SISO state-space matrices or as a cell array \{num, den\} of numerator/denominator filter coefficients.
- As a vector or matrix that defines one or several passbands,
```

filter=[[wp1l,wp1h];[wp2l,wp2h];;[wpnl,wpnh]]

```

The matrix is n -by-2, where each row defines a passband in rad/s. A filter is constructed that gives the union of these passbands. For time-domain data, it is computed as cascaded Butterworth filters or order NF. The default value of NF is 5 .

For example, to define a stopband between ws1 and ws2, use
```

filter = [0 ws1; ws2,Nyqf]

```
where Nyqf is the Nyquist frequency.
- For frequency-domain data, only the frequency response of the filter can be specified:
```

filter = Wf

```

Here Wf is a vector of possibly complex values that define the filter's frequency response, so that the inputs and outputs at frequency Z. Frequency ( kf ) are multiplied by Wf ( kf ). Wf is a column vector of length \(=\) number of frequencies in \(Z\). If the data object has several experiments, \(\mathbf{W f}\) is a cell array of length \(=\#\) of experiments in \(\mathbf{Z}\).

For time-domain data, the filtering is carried out in the time domain as causal filtering as default. This corresponds to a last argument causality = 'causal'. With causality = 'noncausal', a noncausal, zero-phase filter is used for the filtering (corresponding to filtfilt in the Signal Processing Toolbox product).

For frequency-domain data, the signals are multiplied by the frequency response of the filter. With the filters defined as passband, this gives ideal, zero-phase filtering ("brickwall filters"). Frequencies that have been assigned zero weight by the filter (outside the passband, or via the frequency response) are removed from the iddata object Zf .

It is common practice in identification to select a frequency band where the fit between model and data is concentrated. Often this corresponds to bandpass filtering with a passband over the interesting breakpoints in a Bode diagram. For identification where a disturbance model is also estimated, it is better to achieve the desired estimation result by using the property 'Focus' (see Algorithm Properties) than just to prefilter the data. The proper values for 'Focus' are the same as the argument filter in idfilt.

\section*{Algorithm}

References

See Also

The Butterworth filter is the same as butter in the Signal Processing Toolbox product. Also, the zero-phase filter is equivalent to filtfilt in that toolbox.

Ljung (1999), Chapter 14.

Algorithm Properties
iddata

Purpose Frequency-response data or model
Syntax \(\quad h=i d f r d(\) Response, Freq, Ts \()\)
h = idfrd(Response,Freq,Ts,...
'CovarianceData', Covariance, 'SpectrumData', Spec, ... 'NoiseCovariance', Speccov)
h = idfrd(Response,Freq,Ts,...
'P1',V1,'PN',VN)
\(\mathrm{h}=\mathrm{idfrd}(\mathrm{mod})\)
h = idfrd(mod,Freqs)

\section*{Description}
h = idfrd(Response,Freq,Ts) constructs an idfrd object that stores the frequency response Response of a linear system at frequency values Freq. Ts is the sampling time interval. For a continuous-time system, set Ts=0.
h = idfrd(Response,Freq,Ts,...
'CovarianceData', Covariance, 'SpectrumData', Spec, ... 'NoiseCovariance', Speccov) also stores the uncertainty of the response Covariance, the spectrum of the additive disturbance (noise) Spec, and the uncertainty of the noise Speccov.
h = idfrd(Response,Freq,Ts,...
'P1', V1, 'PN', VN) constructs an idfrd object that stores a frequency-response model with properties specified by the idfrd model property-value pairs.
h = idfrd(mod) converts a System Identification Toolbox or Control System Toolbox linear model to frequency-response data at default frequencies, including the output noise spectra and their covariance. If the linear model has an input-to-output delay, this delay is converted to a phase lag.
h = idfrd(mod, Freqs) converts a System Identification Toolbox or Control System Toolbox linear model to frequency-response data at frequencies Freqs.

For a model
\[
y(t)=G(q) u(t)+H(q) e(t)
\]
stores the transfer function estimate \(G\left(e^{i \omega}\right)\), as well as the spectrum of the additive noise ( \(\Phi_{v}\) ) at the output
\[
\Phi_{v}(\omega)=\lambda T\left|H\left(e^{i \omega T}\right)\right|^{2}
\]
where \(\lambda\) is the estimated variance of \(e(t)\), and \(T\) is the sampling interval.

\section*{Creating idfrd from Given Responses}

Response is a 3-D array of dimension ny-by-nu-by-Nf, with ny being the number of outputs, nu the number of inputs, and \(N f\) the number of frequencies (that is, the length of Freqs). Response(ky, ku, kf) is thus the complex-valued frequency response from input ku to output ky at frequency \(\omega=\) Freqs ( \(k f\) ). When defining the response of a SISO system, Response can be given as a vector.
Freqs is a column vector of length Nf containing the frequencies of the response.
Ts is the sampling interval. \(\mathrm{T}=0\) means a continuous-time model.
Covariance is a \(5-\mathrm{D}\) array containing the covariance of the frequency response. It has dimension ny-by-nu-by-Nf-by-2-by-2. The structure is such that Covariance ( \(\mathrm{ky}, \mathrm{ku}, \mathrm{kf},:, \mathrm{:}\) ) is the 2 -by- 2 covariance matrix of the response Response ( \(\mathrm{ky}, \mathrm{ku}, \mathrm{kf}\) ). The 1-1 element is the variance of the real part, the 2-2 element is the variance of the imaginary part, and the 1-2 and 2-1 elements are the covariance between the real and imaginary parts. squeeze (Covariance (ky, ku, kf,:,:)) thus gives the covariance matrix of the corresponding response.
The information about spectrum is optional. The format is as follows:
spec is a 3-D array of dimension ny-by-ny-by-Nf, such that \(\operatorname{spec}(\mathrm{ky} 1, \mathrm{ky} 2, \mathrm{kf})\) is the cross spectrum between the noise at output ky1 and the noise at output ky2, at frequency Freqs (kf). When ky1 = ky2 the (power) spectrum of the noise at output ky1 is thus obtained. For a single-output model, spec can be given as a vector.
speccov is a 3-D array of dimension ny-by-ny-by-Nf, such that speccov(ky1,ky1,kf) is the variance of the corresponding power spectrum. Normally, no information is included about the covariance of the nondiagonal spectrum elements.

If only SpectrumData is to be packaged in the idfrd object, set Response = [].

\section*{Creating idfrd from a Given Model}
idfrd can also be computed from a given model mod (defined as any idmodel object).

If the frequencies Freqs are not specified, a default choice is made based on the dynamics of the model mod.

If mod has InputDelay different from zero, these are appended as phase lags, and h will then have an InputDelay of 0 .

The estimated covariances are computed using the Gauss approximation formula from the uncertainty information in mod. For models with complicated parameter dependencies, numerical differentiation is applied. The step sizes for the numerical derivatives are determined by nuderst.

Frequency responses for submodels can be obtained by the standard subreferencing, \(h=\) idfrd \((m(2,3))\). See idmodel. In particular, \(\mathrm{h}=\) idfrf(m('measured')) gives an h that just contains the ResponseData ( G ) and no spectra. Also \(\mathrm{h}=\) idfrd(m('noise')) gives an \(h\) that just contains SpectrumData.

The idfrd models can be graphed with bode, ffplot, and nyquist, which all accept mixtures of idmodel and idfrd models as arguments. Note that spa, spafdr, and etfe return their estimation results as idfrd objects.
- ResponseData: 3-D array of the complex-valued frequency response as described above. For SISO systems use Response(1,1,:) to obtain a vector of the response data.
- Frequency: Column vector containing the frequencies at which the responses are defined.
- CovarianceData: 5-D array of the covariance matrices of the response data as described above.
- SpectrumData: 3-D array containing power spectra and cross spectra of the output disturbances (noise) of the system.
- NoiseCovariance: 3-D array containing the variances of the power spectra, as explained above.
- Units: Unit of the frequency vector. Can assume the values 'rad/s' and ' Hz '.
- Ts: Scalar denoting the sampling interval of the model whose frequency response is stored. 'Ts' = 0 means a continuous-time model.
- Name: An optional name for the object.
- InputName: String or cell array containing the names of the input channels. It has as many entries as there are input channels.
- OutputName: Correspondingly for the output channels.
- InputUnit: Units in which the input channels are measured. It has the same format as 'InputName'.
- OutputUnit: Correspondingly for the output channels.
- InputDelay: Row vector of length equal to the number of input channels. Contains the delays from the input channels. These should thus be appended as phase lags when the response is calculated. This is done automatically by freqresp, bode, ffplot, and nyquist. Note that if the idfrd is calculated from an idmodel, possible input delays in that model are converted to phase lags, and the InputDelay of the idfrd model is set to zero.
- Notes: An arbitrary field to store extra information and notes about the object.
- UserData: An arbitrary field for any possible use.
- EstimationInfo: Structure that contains information about the estimation process that is behind the frequency data. It contains the following fields (see also the reference page for EstimationInfo).
- Status: Gives the status of the model, for example, 'Not estimated'.
- Method: The identification routine that created the model.
- WindowSize: If the model was estimated by spa, spafdr, or etfe, the size of window (input argument \(M\), the resolution parameter) that was used. This is scalar or a vector.
- Dataname: Name of the data set from which the model was estimated.
- DataLength: Length of this data set.

Note that you can set or retrieve all properties either with the set and get commands or by subscripts. Autofill applies to all properties and values, and these are case insensitive:
```

h.ts = 0
loglog(h.fre,squeeze(h.spe(2,2,:)))

```

For a complete list of property values, use get (m). To see possible value assignments, use set(m). See also idprops idfrd.

Subreferencing The different channels of the idfrd are retrieved by subreferencing.
```

h(outputs,inputs)

```
\(\mathrm{h}(2,3)\) thus contains the response data from input channel 3 to output channel 2 , and, if applicable, the output spectrum data for output channel 2. The channels can also be referred to by their names, as in h('power',\{'voltage', 'speed'\}).
```

h('m')

```
contains the information for measured inputs only, that is, just ResponseData, while
h('n')
(' \(n\) ' for 'noise') just contains SpectrumData.

\section*{Horizontal Concatenation \\ Adding input channels, \\ \[
h=[h 1, h 2, \ldots, h N]
\]}
creates an idfrd model \(h\), with ResponseData containing all the input channels in \(\mathrm{h} 1, \ldots, \mathrm{hN}\). The output channels of hk must be the same, as well as the frequency vectors. SpectrumData is ignored.

\section*{Vertical Concatenation}

Adding output channels,
h = [h1;h2;... ;hN]
creates an idfrd model h with ResponseData containing all the output channels in h1, h2, .., hN. The input channels of hk must all be the same, as well as the frequency vectors. SpectrumData is also appended for the new outputs. The cross spectrum between output channels is then set to zero.

\section*{Converting You can convert an idfrd object to a frequency-domain iddata object by to iddata \\ ```
Data = iddata(Idfrdmodel)
```}

See iddata.

\section*{Examples Compare the results from spectral analysis and an ARMAX model.}
```

m = armax(z,[2 2 2 1]);
g = spa(z)
g = spafdr(z,[],{0,10})
bode(g,m)

```

Compute separate idfrd models, one containing the frequency function and the other the noise spectrum.
```

g = idfrd(m('m'))
phi = idfrd(m('n'))

```

\section*{See Also}
```

bode
etfe
ffplot
freqresp
nyquist
spa
spafdr

```

\section*{Purpose}

Linear ODE (grey-box model) with known and unknown parameters

\section*{Syntax}
```

m = idgrey(MfileName,ParameterVector,CDmfile)
m = idgrey(MfileName,ParameterVector,CDmfile,FileArgument,Ts,...
'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Description}

The function idgrey is used to create arbitrarily parameterized
state-space models as idgrey objects.

MfileName is the name of a MATLABfile that defines how the state-space matrices depend on the parameters to be estimated. The format of this file is given by
\[
[A, B, C, D, K, X 0]=\text { mymfile(pars,Tsm,Auxarg) }
\]
and is further discussed below.
ParameterVector is a column vector of the nominal/initial parameters. Its length must be equal to the number of free parameters in the model (that is, the argument pars in the example below).

The argument CDmfile describes how the user-written file handles continuous and discrete-time models. It takes the following values:
- CDmfile = 'cd': The file returns the continuous-time state-space matrices when called with the argument Tsm \(=0\). When called with a value Tsm > 0 , the file returns the discrete-time state-space matrices, obtained by sampling the continuous-time system with sampling interval Tsm. The file must consequently in this case include the sampling procedure.
- CDmfile = 'c'. The file always returns the continuous-time state-space matrices, no matter the value of Tsm. In this case the toolbox's estimation routines will provide the sampling when you are fitting the model to discrete-time data.
- CDmfile = 'd'. The file always returns discrete-time state-space matrices that may or may not depend on Tsm.

The argument FileArgument corresponds to the auxiliary argument Auxarg in the user-written file. It can be used to handle several variants of the model structure, without having to edit the file. If it is not used, enter FileArgument = []. (Default.)
Ts denotes the sampling interval of the model. Its default value is Ts = 0 , that is, a continuous-time model.

The idgrey object is a child of idmodel. Therefore any idmodel properties can be set as property name/property value pairs in the idgrey command. They can also be set by the command set, or by subassignment, as in
```

m.InputName = {'speed','voltage'}
m.FileArgument = 0.23

```

There are also two properties, DisturbanceModel and InitialState, that can be used to affect the parameterizations of \(K\) and \(X 0\), thus overriding the outputs from the file.
- MfileName: Name of the user-written function.
- CDmfile: How this file handles continuous and discrete-time models depending on its second argument, \(T\).
- CDmfile = 'cd' means that the file returns the continuous-time state-space model matrices when the argument \(\mathrm{T}=0\), and the discrete-time model, obtained by sampling with sampling interval T , when \(\mathrm{T}>0\).
- CDmfile = 'c' means that the file always returns continuous-time model matrices, no matter the value of T.
- CDmfile = 'd' means that the file always returns discrete-time model matrices that may or may not depend on the value of T .
- FileArgument: Possible extra input arguments to the user-written file.
- DisturbanceModel: Affects the parameterization of the K matrix. It can assume the following values:
- 'Model': This is the default. It means that the K matrix obtained from the user-written file is used.
- 'Estimate ': The K matrix is treated as unknown and all its elements are estimated as free parameters.
- 'Fixed': The K matrix is fixed to a given value.
- 'None': The K matrix is fixed to zero, thus producing an output-error model.

Note that in the three last cases the output K from the user-written file is ignored. The estimated/fixed value is stored internally and does not change when the model is sampled, resampled, or converted to continuous time. Note also that this estimated value is tailored only to the sampling interval of the data.
- InitialState: Affects the parameterization of the X0 vector. It can assume the following values:
- 'Model': This is the default. It means that the X0 vector is obtained from the user-written file.
- 'Estimate': The X0 matrix is treated as unknown and all its elements are estimated as free parameters.
- 'Fixed': The X0 vector is fixed to a given value.
- 'Backcast ': The X0 vector is estimated using a backcast operation analogous to the idss case.
- 'Auto': Makes a data-dependent choice among 'Estimate', 'Backcast', and 'Model'.
- A, B, C, D, K, and XO: The state-space matrices. For idgrey models, only ' \(K\) ' and ' \(X O\) ' can be set; the others can only be retrieved. The set ' \(K\) ' and ' XO ' are relevant only when DisturbanceModel/InitialState are Estimate or Fixed.
- \(d A, d B, d C, d D, d K\), and \(d X O\) : The estimated standard deviations of the state-space matrices. These cannot be set, only retrieved.

In addition, any idgrey object also has all the properties of idmodel. See Algorithm Properties and the reference page for idmodel.

Note that you can set or retrieve all properties using either the set and get commands or subscripts. Autofill applies to all properties and values, and they are case insensitive.
```

m.fi = 10;
set(m,'search','gn')
p = roots(m.a)

```

For a complete list of property values, use get (m). To see possible value assignments, use set(m).

\section*{MATLAB \\ File Details}

The model structure corresponds to the general linear state-space structure
\[
\begin{aligned}
\tilde{x}(t) & =A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
x(0) & =x_{0}(\theta) \\
y(t) & =C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{aligned}
\]

Here \(\tilde{x}(t)\) is the time derivative \(\dot{x}(t)\) for a continuous-time model and \(x(t+T s)\) for a discrete-time model.
The matrices in this time-discrete model can be parameterized in an arbitrary way by the vector \(\theta\). Write the format for the file as follows:
\[
[A, B, C, D, K, x 0]=\text { mymfile(pars, } T, \text { Auxarg) }
\]

Here the vector pars contains the parameters \(\theta\), and the output arguments A, B, C, D, K, and xO are the matrices in the model description that correspond to this value of the parameters and this value of the sampling interval T .
T is the sampling interval, and Auxarg is any variable of auxiliary quantities with which you want to work. (In that way you can change certain constants and other aspects in the model structure without having to edit the file.) Note that the two arguments T and Auxarg
must be included in the function head of the file, even if they are not used within the file.

A comment about CDmfile: If a continuous-time model is sought, it is easiest to let the file deliver just the continuous-time model, that is, have CDmfile = 'c' and rely upon the toolbox's routines for the proper sampling. Similarly, if the underlying parameterization is indeed discrete time, it is natural to deliver the discrete-time model matrices and let CDmfile \(=\) 'd'. If the underlying parameterization is continuous, but you prefer for some reason to do your own sampling inside the file in accordance with the value of T , then let your file deliver the continuous-time model when called with \(T=0\), that is, the alternative CMmfile \(=\) 'cd'. This avoids sampling and then transforming back (using d2c) to find the continuous-time model.

\section*{idgrey Definition of States}

\section*{Examples}

The states of an idgrey model are defined explicitly by the user in the function or MEX-file (as specified in MfileName property) storing the model structure. The concept of states is useful for functions such as sim, predict, compare and findstates.

In this example, you use the file mynoise given in "Example Estimating a Discrete-Time Grey-Box Model with Parameterized Disturbance" to obtain a physical parameterization of the Kalman gain. You estimate the unknown parameters of this model using the estimation data \(z\).
```

mn = idgrey('mynoise',[0.1,-2,1,3,0.2]','d',1)
m = pem(z,mn)

```

\section*{idinput}

\section*{Purpose Generate input signals}
```

Syntax u = idinput(N)
u = idinput(N,type,band,levels)
[u,freqs] = idinput(N,'sine',band,levels,sinedata)

```

\section*{Description}
idinput generates input signals of different kinds, which are typically used for identification purposes. \(u\) is returned as a matrix or column vector.

For further use in the toolbox, we recommend that you create an iddata object from \(u\), indicating sampling time, input names, periodicity, and so on:
u = iddata([],u);

N determines the number of generated input data. If N is a scalar, u is a column vector with this number of rows.
\(N=[N \mathrm{nu}]\) gives an input with nu input channels each of length \(N\).
\(N=[P\) nu M] gives a periodic input with nu channels, each of length \(M * P\) and periodic with period \(P\).

Default is nu = 1 and \(M=1\).
type defines the type of input signal to be generated. This argument takes one of the following values:
- type \(=\) 'rgs': Gives a random, Gaussian signal.
- type = 'rbs': Gives a random, binary signal. This is the default.
- type = 'prbs': Gives a pseudorandom, binary signal.
- type = 'sine': Gives a signal that is a sum of sinusoids.

The frequency contents of the signal is determined by the argument band. For the choices type = 'rs', 'rbs', and 'sine', this argument is a row vector with two entries
```

band = [wlow, whigh]

```
that determine the lower and upper bound of the passband. The frequencies wlow and whigh are expressed in fractions of the Nyquist frequency. A white noise character input is thus obtained for band = [0 1 1], which is also the default value.

For the choice type \(=\) 'prbs',
```

band = [0, B]

```
where \(B\) is such that the signal is constant over intervals of length 1 / \(B\) (the clock period). In this case the default is band \(=\left[\begin{array}{ll}0 & 1\end{array}\right]\).

The argument levels defines the input level. It is a row vector
```

levels = [minu, maxu]

```
such that the signal \(u\) will always be between the values minu and maxu for the choices type \(=\) 'rbs', 'prbs', and 'sine'. For type \(=\) 'rgs', the signal level is such that minu is the mean value of the signal, minus one standard deviation, while maxu is the mean value plus one standard deviation. Gaussian white noise with zero mean and variance one is thus obtained for levels \(=[-1,1]\), which is also the default value.

\section*{Some PRBS Aspects}

If more than one period is demanded (that is, \(M>1\)), the length of the data sequence and the period of the PRBS signal are adjusted so that an integer number of maximum length PRBS periods is always obtained. If \(M=1\), the period of the PRBS signal is chosen to that it is longer than \(P=N\). In the multiple-input case, the signals are maximally shifted. This means P/nu is an upper bound for the model orders that can be estimated with such a signal.

\section*{Some Sine Aspects}

In the 'sine ' case, the sinusoids are chosen from the frequency grid
```

freq = 2*pi*[1:Grid_Skip:fix(P/2)]/P

```
intersected with pi*[band(1) band(2)]. For Grid_Skip, see below. For multiple-input signals, the different inputs use different frequencies from this grid. An integer number of full periods is always delivered. The selected frequencies are obtained as the second output argument, freqs, where row ku of freqs contains the frequencies of input number \(k u\). The resulting signal is affected by a fifth input argument, sinedata
```

sinedata = [No_of_Sinusoids, No_of_Trials, Grid_Skip]

```
meaning that No_of_Sinusoids is equally spread over the indicated band. No_of_Trials (different, random, relative phases) are tried until the lowest amplitude signal is found.
```

Default: sinedata = [10,10,1];

```

Grid_Skip can be useful for controlling odd and even frequency multiples, for example, to detect nonlinearities of various kinds.

\section*{Algorithm}

\section*{References}

Examples
Very simple algorithms are used. The frequency contents are achieved for 'rgs' by an eighth-order Butterworth, noncausal filter, using idfilt. This is quite reliable. The same filter is used for the 'rbs' case, before making the signal binary. This means that the frequency contents are not guaranteed to be precise in this case.
For the 'sine' case, the frequencies are selected to be equally spread over the chosen grid, and each sinusoid is given a random phase. A number of trials are made, and the phases that give the smallest signal amplitude are selected. The amplitude is then scaled so as to satisfy the specifications of levels.
See Söderström and Stoica (1989), Chapter C5.3. For a general discussion of input signals, see Ljung (1999), Section 13.3.
Create an input consisting of five sinusoids spread over the whole frequency interval. Compare the spectrum of this signal with that of its square. The frequency splitting (the square having spectral support at other frequencies) reveals the nonlinearity involved:
```

u = idinput([100 1 20],'sine',[],[],[5 10 1]);
u = iddata([],u,1,'per',100);
u2 = u.u.^2;
u2 = iddata([],u2,1,'per',100);
ffplot(etfe(u),'r*',etfe(u2),'+')

```

\section*{idmodel}

\section*{Purpose}

Superclass for linear models
idmodel is an object that you do not deal with directly. It contains all the common properties of the model objects idarx, idgrey, idpoly, idproc, and idss, which are returned by the different estimation routines.

\section*{Basic Use}

If you just estimate models from data, the model objects should be transparent. All parametric estimation routines return idmodel results.
```

m = arx(Data,[2 2 1])

```

The model \(m\) contains all relevant information. Just typing \(m\) will give a brief account of the model. present (m) also gives information about the uncertainties of the estimated parameters. get (m) gives a complete list of model properties.

Most of the interesting properties can be directly accessed by subreferencing:
\[
\begin{aligned}
& \text { m.a } \\
& \text { m.da }
\end{aligned}
\]

See the property list obtained by get (m), as well as the property lists of idgrey, idarx, idpoly, and idss in Chapter 2, "Functions Alphabetical List" for more details on this. See also idprops.

The characteristics of the model m can be directly examined and displayed by commands like impulse, step, bode, nyquist, and pzmap. The quality of the model is assessed by commands like compare and resid. When you have Control System Toolbox software installed, you can use view (m) to access various display functions.

To extract state-space matrices, transfer function polynomials, etc., use the commands arxdata, polydata, tfdata, ssdata, and zpkdata.

To compute the frequency response of the model, use the commands idfrd and freqresp.

\section*{Creating and Modifying Model Objects}

If you want to define a model to use, for example, for simulating data, you need to use the model creator functions:
- idarx, for multivariable ARX models
- idgrey, for user-defined grey-box state-space models
- idpoly, for single-output polynomial models
- idproc, for simple, continuous-time process models
- idss, for state-space models

If you want to estimate a state-space model with a specific internal parameterization, you need to create an idss model or an idgrey model. See the reference pages for these functions.

\section*{Dealing with Input and Output Channels}

For multivariable models, you construct submodels containing a subset of inputs and outputs by simple subreferencing. The outputs and input channels can be referenced according to
```

m(outputs,inputs)

```

Use a colon (:) to denote all channels and an empty matrix ([]) to denote no channels. The channels can be referenced by number or by name. For several names, you must use a cell array, such as
```

m3 = m('position',{'power','speed'})

```
or
\[
m 3=m\left(3,\left[\begin{array}{ll}
1 & 4
\end{array}\right]\right)
\]

Thus m3 is the model obtained from \(m\) by looking at the transfer functions from input numbers 1 and 4 (with input names 'power' and 'speed') to output number 3 (with name position).

\section*{idmodel}

For a single-output model m,
```

m4 = m(inputs)

```
selects the corresponding input channels, and for a single-input model,
```

m5 = m(outputs)

```
selects the indicated output channels.
Subreferencing is quite useful, for example, when a plot of just some channels is desired.

\section*{Noise Channels}

The estimated models have two kinds of input channels: the measured inputs \(u\) and the noise inputs \(e\). For a general linear model \(m\), we have
\[
y(t)=G(q) u(t)+H(q) e(t)
\]
where \(u\) is the \(n u\)-dimensional vector of measured input channels and e is the \(n y\)-dimensional vector of noise channels. The covariance matrix of e is given by the property 'NoiseVariance '. Occasionally this matrix \(\Lambda\) is written in factored form,
\[
\Lambda=L L^{T}
\]

This means that e can be written as
\[
e=L v
\]
where \(v\) is white noise with identity covariance matrix (independent noise sources with unit variances).
If m is a time series \((n u=0), G\) is empty and the model is given by
\[
y(t)=H(q) e(t)
\]

For the model \(m\), the restriction to the transfer function matrix \(G\) is obtained by
```

m1 = m('measured') or just m1 = m('m')

```

Then e is set to 0 and H is removed.
Analogously,
```

m2 = m('noise') or just m2 = m('n')

```
creates a time-series model m 2 from m by ignoring the measured input. That is, m2 describes the signal He .

For a system with measured inputs, bode, step, and other transformation and display functions deal with the transfer function matrix \(G\). To obtain or graph the properties of the disturbance model \(H\), it is therefore important to make the transformations m('n'). For example,
```

bode(m('n'))

```
plots the additive noise spectra according to the model m, while
```

bode(m)

```
just plots the frequency responses of \(G\).
To study the noise contributions in more detail, it is useful to convert the noise channels to measured channels, using the command noisecnv.
```

m3 = noisecnv(m)

```

This creates a model m3 with all input channels, both measured \(u\) and noise sources e, treated as measured signals. That is, m3 is a model from \(u\) and e to y , describing the transfer functions \(G\) and \(H\). The information about the variance of the innovations e is lost. For example, studying the step response from the noise channels does not take into consideration how large the noise contributions actually are.

To include that information, e should first be normalized, \(e=L v\), so that \(v\) becomes white noise with an identity covariance matrix.

\section*{idmodel}
m4 = noisecnv(m,'Norm')

This creates a model m 4 where \(u\) and \(v\) are treated as measured signals.
\[
y(t)=G(q) u(t)+H(q) L v(t)=[G H L]\left[\begin{array}{l}
u \\
v
\end{array}\right]
\]

For example, the step responses from \(v\) to \(y\) will now reflect the typical size of the disturbance influence because of the scaling by \(L\). In both cases, the previous noise sources that have become regular inputs will automatically get input names that are related to the corresponding output. The unnormalized noise sources e have names like 'e@ynam1' (noise e at output channel ynam1), while the normalized sources \(v\) are called 'v@ynam1'.

\section*{Retrieving Transfer Functions}

The functions that retrieve transfer function properties, ssdata, tfdata, and zpkdata, behave, as follows, for a model with measured inputs. (fon is ssdata, tfdata, or zpkdata.)
fon(m) returns the properties of \(G\) (\(n y\) outputs and \(n u\) inputs).
\(\mathrm{fcn}\left(\mathrm{m}\left(\mathrm{'n}^{\prime}\right)\right)\) returns the properties of the transfer function \(H\) (ny outputs and ny inputs).
fcn(noisecnv(m, 'Norm')) returns the properties of the transfer function \([G H L\}\) (ny outputs and \(n y+n u\) inputs). Analogously,
```

m1 = m('n');
fcn(noisecnv(m1,'Norm'))

```
returns the properties of the transfer function \(H L\) (ny outputs and \(n y\) inputs).
If \(m\) is a time-series model, \(f \subset n(m)\) returns the properties of \(H\), while
```

fcn(noisecnv(m,'Norm'))

```
returns the properties of \(H L\).

Note that the estimated covariance matrix NoiseVariance itself is uncertain. This means that the uncertainty information about \(H\) is different from that of \(H L\).

\section*{idmodel Properties}

In the list below, ny is the number of output channels, and nu is the number of input channels:
- Name: An optional name for the data set. An arbitrary string.
- OutputName, InputName: Cell arrays of length ny-by-1 and nu-by-1 containing the names of the output and input channels. For estimated models, these are inherited from the data. If not specified, they are given default names \{'y1','y2',...\} and \{'u1','u2', ...\}.
- OutputUnit, InputUnit: Cell arrays of length ny-by-1 and nu-by-1 containing the units of the output and input channels. Inherited from data for estimated models.
- TimeUnit: Unit for the sampling interval.
- Ts: Sampling interval. A nonnegative scalar. Ts \(=0\) denotes a continuous-time model. Note that changing just Ts will not recompute the model parameters. Use c2d and d2c for recomputing the model to other sampling intervals.
- ParameterVector: Vector of adjustable parameters in the model structure. Initial/nominal values or estimated values, depending on the status of the model. A column vector.
- PName: The names of the parameters. A cell array of the length of the parameter vector. If not specified, it will contain empty strings. See also setpname.
- CovarianceMatrix: Estimated covariance matrix of the parameter vector. For a nonestimated model this is the empty matrix. For state-space models in the 'Free' parameterization the covariance matrix is also the empty matrix, since the individual matrix elements are not identifiable then. Instead, in this case, the covariance information is hidden (in the hidden property 'Utility') and retrieved by the relevant functions when necessary. Setting

\section*{idmodel}

CovarianceMatrix to 'None ' inhibits calculation of covariance and uncertainty information. This can save substantial time for certain models.
- NoiseVariance: Covariance matrix of the noise source e. An ny-by-ny matrix.
- InputDelay: Vector of size nu-by-1, containing the input delay from each input channel. For a continuous-time model (\(\mathrm{Ts}=0\)) the delay is measured in TimeUnit, while for discrete-time models (Ts > 0) the delay is measured as the number of samples. Note the difference between InputDelay and nk (which is a property of idarx, idss, and idpoly). 'Nk' is a model structure property that tells the model structure to include such an input delay. In that case, the corresponding state-space matrices and polynomials will explicitly contain Nk input delays. The property InputDelay, on the other hand, is an indication that in addition to the model as defined, the inputs should be shifted by the given amount. InputDelay is used by sim and the estimation routines to shift the input data. When computing frequency responses, the InputDelay is also respected. Note that InputDelay can be both positive and negative.
- Algorithm: See the reference page for Algorithm Properties.
- EstimationInfo: See the reference page for EstimationInfo.
- Notes: An arbitrary field to store extra information and notes about the object.
- UserData: An arbitrary field for any possible use.

Note All properties can be set or retrieved either by these commands or by subscripts. Autofill applies to all properties and values, and is case insensitive.

For a complete list of property values, use get (m). To see possible value assignments, use set(m).

Subreferencing The outputs and input channels can be referenced according to
```

m(outputs,inputs)

```

Use a colon (:) to denote all channels and an empty matrix ([]) to denote no channels. The channels can be referenced by number or by name. For several names, you must use a cell array.
```

m2 = m('y3',{'u1','u4'})
m3 = m(3,[14 4])

```

For a single output model m,
```

m4 = m(inputs)

```
selects the corresponding input channels, and for a single input model,
```

m5 = m(outputs)

```
selects the indicated output channels.
The string 'measured' (or any abbreviation like 'm') means the measured input channels.
```

m4 = m(3,'m')
m('m') is the same as m(:,'m')

```

Similarly, the string 'noise ' (or any abbreviation) refers to the noise input channels. See "Noise Channels" on page 2-168 for more details.

\section*{Horizontal Adding input channels, Concatenation \\ \[
m=[m 1, m 2, \ldots, m N]
\]}
creates an idmodel object m, consisting of all the input channels in \(\mathrm{m} 1, \ldots \mathrm{mN}\). The output channels of \(m k\) must be the same.

\section*{idmodel}

\section*{Vertical Adding output channels, Concatenation \\ m = [m1;m2;... ;mN]}
creates an idmodel object m consisting of all the output channels in m 1 , m 2 , . . mN . The input channels of mk must all be the same.

\section*{Online Help Functions}

Type idhelp idmodel, idprops idmodel, idprops idmodel algorithm.

See Also
```

Algorithm Properties
EstimationInfo
compare
idarx
idgrey
idpoly
idproc
idss
noisecnv

```

\section*{Purpose Nonlinear ARX model}

Syntax \(\quad m=i d n l a r x\left(\left[\begin{array}{lll}n a n b & n k\end{array}\right]\right)\)
\(m\) = idnlarx([na nb nk],Nonlinearity)
m = idnlarx([na nb nk],Nonlinearity,'PropertyName', PropertyValue)
\(m\) = idnlarx(LinModel)
\(m\) = idnlarx(LinModel,Nonlinearity)
\(m\) = idnlarx(LinModel,Nonlinearity,'PropertyName', PropertyValue)

\section*{Description}

Represents nonlinear ARX model. The nonlinear ARX structure is an extension of the linear ARX structure and contains linear and nonlinear functions. For more information, see "Nonlinear ARX Model Extends the Linear ARX Structure".

Typically, you use the nlarx command to both construct the idnlarx object and estimate the model parameters. You can configure the model properties directly in the nlarx syntax.

You can also use the idnlarx constructor to create the nonlinear ARX model structure and then estimate the parameters of this model using nlarx or pem.

For idnlarx object properties, see:
- "idnlarx Model Properties" on page 2-177
- "idnlarx Algorithm Properties" on page 2-180
- "idnlarx Advanced Algorithm Properties" on page 2-184
- "idnlarx EstimationInfo Properties" on page 2-186

\section*{Construction}
\(m=\) idnlarx ([na nb nk]) creates an idnlarx object using a default wavelet network as its nonlinearity estimator. na, nb, and \(n k\) are positive integers that specify model orders and delays.

\section*{idnlarx}

\section*{Input Arguments}
\(m=i d n l a r x([n a n b n k], N o n l i n e a r i t y)\) specifies a nonlinearity estimator Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\(m=\) idnlarx([na nb
nk],Nonlinearity, 'PropertyName', PropertyValue) creates the object using options specified as idnlarx property name and value pairs. Specify PropertyName inside single quotes.
\(m=\) idnlarx(LinModel) creates an idnlarx object using a linear model (in place of [na \(n b n k\)]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly) for single-output systems and idarx object for multi-output systems. LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of \(m\), and the polynomials initialize the linear function of the nonlinearity estimator.
\(m\) = idnlarx(LinModel,Nonlinearity) specifies a nonlinearity estimator Nonlinearity.
\(m=\)
idnlarx(LinModel,Nonlinearity,'PropertyName',PropertyValue) creates the object using options specified as idnlarx property name and value pairs.
na nb nk
Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose \(i\) - \(j\) th entry gives the number of delayed \(j\) th outputs used to compute the \(i\) th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

\section*{Nonlinearity}

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\begin{tabular}{ll}
'wavenet ' or wavenet object & Wavelet \\
(default) & network \\
'sigmoidnet ' or sigmoidnet object & \begin{tabular}{l}
Sigmoid \\
network
\end{tabular} \\
'treepartition' or treepartition object & Binary-tree \\
'linear' or [] or linear object & Linear function \\
neuralnet object & Neural network \\
customnet object & Custom \\
& network
\end{tabular}

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by- 1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

\section*{LinModel}

Discrete time input-output polynomial model of ARX structure, typically estimated using the arx command:
- idpoly object for single-output systems
- idarx object for multi-output systems
idnlarx

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model time unit
get(m,'TimeUnit')
% Get value of Nonlinearity property
m.Nonlinearity

```

\section*{idnlarx}

You can specify property name-value pairs in the model estimator or constructor to configure the model structure and estimation algorithm.

The following table summarizes idnlarx model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Algorithm & A structure that specifies the estimation algorithm options, as described in "idnlarx Algorithm Properties" on page 2-180. \\
\hline CustomRegressors & \begin{tabular}{l}
Custom expression in terms of standard regressors. Assignable values: \\
- Cell array of strings. For example: \{'y1(t-3)^3', 'y2(t-1)*u1(t-3)', 'sin(u3(t-2))'\}. \\
- Object array of customreg objects. Create these objects using commands such as customreg and polyreg. For more information, see the corresponding reference pages.
\end{tabular} \\
\hline EstimationInfo & A read-only structure that stores estimation settings and results, as described in "idnlarx EstimationInfo Properties" on page 2-186. \\
\hline Focus & \begin{tabular}{l}
Specifies 'Prediction' or 'Simulation'. \\
Assignable values: \\
- 'Prediction' (default) — The estimation algorithm minimizes \(\|y-\hat{y}\|\), where \(\hat{y}\) is the 1 -step ahead predicted output. This algorithm does not necessarily minimize the simulation error. \\
- 'Simulation' - The estimation algorithm minimizes the simulation error and optimizes the results of compare(data, model, Inf). That is, when computing \(\hat{y}\), \(y\) in the regressors in \(F\) are replaced by values simulated
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & \\
\hline & \\
\hline
\end{tabular}

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Nonlinearity & \begin{tabular}{l}
Nonlinearity estimator object. Assignable values include \\
wavenet (default), sigmoidnet, treepartition, customnet, \\
neuralnet, and linear. If the model contains only one \\
regressor, you can also use saturation, deadzone, pwlinear, \\
or poly 1d. \\
For ny outputs, Nonlinearity is an ny-by-1 array. For \\
example, [sigmoidnet; wavenet for a two-output model. \\
When you specify a scalar object, this nonlinearity applies to \\
all outputs.
\end{tabular} \\
\hline \begin{tabular}{l}
na \\
nb \\
nk
\end{tabular} & \begin{tabular}{l}
Nonlinear ARX model orders and input delays, where na is the \\
number of output terms, nb is the number of input terms, and \\
nk is the delay from input to output in terms of the number \\
of samples.
\end{tabular} \\
\begin{tabular}{l}
For ny outputs and nu inputs, na is an ny-by-ny matrix whose \\
i-jth entry gives the number of delayed jth outputs used to \\
compute the ith output. nb and nk are ny-by-nu matrices.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlarx Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlarx model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Advanced & \begin{tabular}{l}
A structure that specifies additional estimation algorithm \\
options, as described in "idnlarx Advanced Algorithm \\
Properties" on page 2-184.
\end{tabular} \\
\hline Criterion & \begin{tabular}{l}
The search method of 1sqnonlin supports the Trace criterion \\
only.
\end{tabular} \\
\begin{tabular}{l}
Use for multiple-output models only. Criterion can have the \\
following values:
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
- 'Det': Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\), where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. \\
- 'Trace': Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E * W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (\(E^{\prime *}\) E), or the traditional least-squares criterion). You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property. If the model contains neuralnet or treepartition as one of its nonlinearity estimators, weighting is not applied because estimations are independent for each output.
\end{tabular} \\
\hline & \begin{tabular}{l}
Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. Det can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion. \\
If you want to achieve better accuracy for a particular channel in MIMO models, use Trace with weighting that favors that channel. Otherwise, use Det. If you use Det, check cond(model. NoiseVariance) after estimation. If the matrix is ill-conditioned, try using the Trace criterion. You can also use compare on validation data to check whether the relative
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
error for different channels corresponds to your needs or \\
expectations. Use the Trace criterion if you need to modify the \\
relative errors, and check model. NoiseVariance to determine \\
what weighting modifications to specify.
\end{tabular} \\
\hline IterWavenet & \begin{tabular}{l}
(For wavenet nonlinear estimator only) \\
Toggles performing iterative or noniterative estimation. \\
Default: 'auto '. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- 'auto' - First estimation is noniterative and subsequent \\
estimation are iterative.
\end{tabular} \\
- 'On ' — Perform iterative estimation only. \\
- 'Off ' — Perform noniterative estimation only.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MaxSize & \begin{tabular}{l}
The number of elements (size) of the largest matrix to be \\
formed by the algorithm. Computational loops are used \\
for larger matrices. Use this value for memory/speed \\
trade-off.MaxSize can be any positive integer. \\
Default: 250000.
\end{tabular} \\
\hline & \begin{tabular}{l}
Note The original data matrix of \(u\) and \(y\) must be smaller \\
than MaxSize.
\end{tabular} \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- 'Auto' — Automatically chooses from the following \\
methods. \\
- 'gn' — Subspace Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method. \\
- 'grad' — A gradient method. \\
- 'lm' — Levenberg-Marquardt method. \\
- 'lsqnonlin' - Nonlinear least-squares method (requires \\
the Optimization Toolbox product). This method only \\
handles the 'Trace' criterion.
\end{tabular} \\
\hline Tolerance & \begin{tabular}{l}
Specifies to terminate the iterative search when the expected \\
improvement of the parameter values is less than Tolerance, \\
specified as a positive real value in \%. \\
Default: 0.01.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Display & \begin{tabular}{l}
Toggles displaying or hiding estimation progress information \\
in theMATLAB Command Window. \\
Default: 'Off'. \\
Assignable values:
\end{tabular} \\
& - 'Off ' - Hide estimation information. \\
- 'On' - Display estimation information.
\end{tabular}

\section*{idnlarx Advanced Algorithm Properties}

The following table summarizes the fields of the Algorithm. Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max \((\operatorname{size}(\mathrm{J}))^{*}\) norm \((\mathrm{J}) *\) eps. Singular \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1 e 4. \\
Assign a positive, real value.
\end{tabular} \\
\hline LMStartValue & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) The starting \\
level of regularization when using the Levenberg-Marquardt \\
search method (Algorithm. SearchMethod='lm'). \\
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10. \\
Assign a real value >1.
\end{tabular} \\
\hline MaxBisections & \begin{tabular}{l}
Maximum number of bisections performed by the line search \\
algorithm along the search direction (number of rotations of \\
search vector for 'lm'). Used by 'gn', 'lm', 'gna' and 'grad' ' \\
search methods (Algorithm. SearchMethod property) \\
Default: 10. \\
Assign a positive integer value.
\end{tabular} \\
\hline MaxFunEvals & \begin{tabular}{l}
The iterations are stopped if the number of calls to the model \\
file exceeds this value. \\
Default: Inf. \\
Assign a positive integer value.
\end{tabular} \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16. \\
Assign a positive, real value.
\end{tabular} \\
\hline RelImprovement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than RelImprovement. \\
Default: 0. \\
Assign a positive real value.
\end{tabular} \\
\hline StepReduction & \begin{tabular}{l}
Note Does not apply to \\
Nora \\
Algorithm. SearchMethod= ' lsqnonlin'
\end{tabular} \\
\hline \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlarx}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value \(>1\).
\end{tabular} \\
\begin{tabular}{ll}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin'
\end{tabular} \\
\hline
\end{tabular}
idnlarx EstimationInfo Properties

The following table summarizes the fields of the EstimationInfo model properties. The read-only fields of the EstimationInfo structure store estimation settings and results.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Shows the estimation method. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to det (E' *E/N), where E is \\
the residual error matrix (one column for each output) and N is \\
the total number of samples.
\end{tabular} \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & Sampling interval of the estimation data. \\
\hline DataDomain & \begin{tabular}{l}
'Time ' means time domain data. 'Frequency ' is not \\
supported.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation: \\
\(\bullet\) \\
- 'zoh' means zero-order-hold, or piecewise constant.
\end{tabular} \\
\hline EstimationTime & Duration of the estimation. \\
\hline InitRandState & \begin{tabular}{l}
The value of randn('state ') at the last randomization of the \\
initial parameter vector.
\end{tabular} \\
\hline Iterations & Number of iterations performed by the estimation algorithm. \\
\hline UpdateNorm & \begin{tabular}{l}
Norm of the Gauss-Newton in the last iteration. Empty when \\
'lsqnonlin' is the search method.
\end{tabular} \\
\hline LastImprovement & \begin{tabular}{l}
Criterion improvement in the last iteration, shown in \%. \\
Empty when 'lsqnonlin' is the search method.
\end{tabular} \\
\hline Warning & Any warnings encountered during parameter estimation. \\
\hline WhyStop & Reason for terminating parameter estimation iterations. \\
\hline
\end{tabular}

\section*{Definitions Nonlinear ARX Model Structure}

This block diagram represents the structure of a nonlinear ARX model:

The nonlinear ARX model computes the output \(y\) in two stages:

\section*{idnlarx}

1 Computes regressors from the current and past input values and past output data.

In the simplest case, regressors are delayed inputs and outputs, such as \(u(t-1)\) and \(y(t-3)\)-called standard regressors. You can also specify custom regressors, which are nonlinear functions of delayed inputs and outputs. For example, \(\tan (u(t-1))\) or \(u(t-1) * y(t-3)\).

By default, all regressors are inputs to both the linear and the nonlinear function blocks of the nonlinearity estimator. You can choose a subset of regressors as inputs to the nonlinear function block.

2 The nonlinearity estimator block maps the regressors to the model output using a combination of nonlinear and linear functions. You can select from available nonlinearity estimators, such as tree-partition networks, wavelet networks, and multi-layer neural networks. You can also exclude either the linear or the nonlinear function block from the nonlinearity estimator.

The nonlinearity estimator block can include linear and nonlinear blocks in parallel. For example:
\[
F(x)=L^{T}(x-r)+d+g(Q(x-r))
\]
\(x\) is a vector of the regressors. \(L^{T}(x)+d\) is the output of the linear function block and is affine when \(\mathrm{d} \neq 0 . d\) is a scalar offset. \(g(Q(x-r))\) represents the output of the nonlinear function block. \(r\) is the mean of the regressors \(x\). \(Q\) is a projection matrix that makes the calculations well conditioned. The exact form of \(F(x)\) depends on your choice of the nonlinearity estimator.

Estimating a nonlinear ARX model computes the model parameter values, such as \(L, r, d, Q\), and other parameters specifying \(g\). Resulting models are idnlarx objects that store all model data, including model regressors and parameters of the nonlinearity estimator. See the idnlarx reference page for more information.

\section*{Definition of idnlarx States}

The states of an idnlarx object are delayed input and output variables that define the structure of the model. This toolbox requires states for simulation and prediction using sim(idnlarx), predict(idnlarx), and compare. States are also necessary for linearization of nonlinear ARX models using linearize(idnlarx).
This toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.
The states of an idnlarx model are defined by the maximum delay in each input and output variable used by the regressors. If a variable \(p\) has a maximum delay of \(D\) samples, then it contributes \(D\) elements to the state vector at time \(t: p(t-1), p(t-2), \ldots, p(t-D)\).

For example, if you have a single-input, single-output idnlarx model:
```

m = idnlarx([2 3 0],'wavenet', ...
'CustomRegressors', ...
{'y1(t-10)*u1(t-1)'});

```

This model has these regressors:
getreg(m)
Regressors:
y1(t-1)
y1(t-2)
u1(t)
u1(t-1)
u1(t-2)
\(y 1(t-10) * u 1(t-1)\)
The regressors show that the maximum delay in the output variable y 1 is 10 samples and the maximum delay in the input u 1 is 2 samples. Thus, this model has a total of 12 states:

\section*{idnlarx}
\[
x(t)=[y 1(t-1), y 2(t-2),, y 1(t-10), u 1(t-1), u 1(t-2)]
\]

Note The state vector includes the output variables first, followed by input variables.

As another example, consider the 2 -output and 3 -input model:
```

m = idnlarx([2 0 2 2 1 1 0 0; 1 0 1 5 0 1 1 0], ...
[wavenet; linear])

```
getreg lists these regressors:
getreg(m)
Regressors:
For output 1:
y1(t-1)
y1(t-2)
u1(t-1)
u1(t-2)
u2(t)
u2(t-1)
u3(t)
For output 2:
y1(t-1)
u1(t-1)
u2(t-1)
u2(t-2)
u2(t-3)
u2(t-4)
u2(t-5)

The maximum delay in output variable y 1 is 2 samples, which occurs in regressor set for output 1 . The maximum delays in the three input variables are 2,5 , and 0 , respectively. Thus, the state vector is:
\[
\begin{gathered}
x(t)=[y 1(t-1), y 1(t-2), u 1(t-1), u 1(t-2), u 2(t-1), \\
u 2(t-2), u 2(t-3), u 2(t-4), u 2(t-5)]
\end{gathered}
\]

Variables y2 and u3 do not contribute to the state vector because the maximum delay in these variables is zero.

A simpler way to determine states by inspecting regressors is to use getDelayInfo, which returns the maximum delays in all I/O variables across all model outputs. For the multiple-input multiple-output model m , getDelayInfo returns:
```

maxDel = getDelayInfo(m)
maxDel =
2 0 2 % 5 0

```
maxDel contains the maximum delays for all input and output variables in the order (\(\mathrm{y} 1, \mathrm{y} 2\), \(\mathrm{u} 1, \mathrm{u} 2, \mathrm{u} 3\)). The total number of model states is sum(maxDel) \(=9\).

The set of states for an idnlarx model are not required to be minimal.

\section*{Examples}

Create nonlinear ARX model structure with (default) wavelet network nonlinearity:
```

m = idnlarx([2 2 1]) % na=nb=2 and nk=1

```

Create nonlinear ARX model structure with sigmoid network nonlinearity:
```

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

```

\section*{idnlarx}

Create nonlinear ARX model structure with no nonlinear function in nonlinearity estimator:
```

m=idnlarx([2 2 1],[])

```

Construct a nonlinear ARX model using a linear ARX model:
```

% Construct a linear ARX model.
A = [1 -1.2 0.5];
B = [0.8 1];
LinearModel = idpoly(A, B, 'Ts', 0.1);
% Construct nonlinear ARX model using the linear ARX model.
m1 = idnlarx(LinearModel)

```
\begin{tabular}{ll}
See Also \(\quad\) & addreg | customnet | customreg | findop(idnlarx) | getreg | \\
& linear | linearize \((i d n l a r x) \mid\) nlarx \(\mid\) pem | polyreg | sigmoidnet \\
& | wavenet
\end{tabular}

Tutorials

How To
- "Example - Using nlarx to Estimate Nonlinear ARX Models"
- "Example - Using Linear ARX Models to Estimate Nonlinear ARX Models"
- "Identifying Nonlinear ARX Models"
- "Using Linear Model for Nonlinear ARX Estimation"

\section*{Purpose}

Nonlinear ODE (grey-box model) with unknown parameters
Syntax
Description
idnlgrey
Constructor
```

m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m = idnlgrey('filename',Order,Parameters,InitialStates,
Ts,P1,V1,...,PN,VN)

```
idnlgrey is an object that represents the nonlinear grey-box model.
For information about the nonlinear grey-box models, see "Estimating Nonlinear Grey-Box Models".

The information in these reference pages summarizes the idnlgrey model constructor and properties. It discusses the following topics:
- "idnlgrey Constructor" on page 2-193
- "idnlgrey Properties" on page 2-194
- "idnlgrey Advanced Algorithm Properties" on page 2-201
- "idnlgrey Simulation Options" on page 2-203
- "idnlgrey Gradient Options" on page 2-206
- "idnlgrey EstimationInfo Properties" on page 2-207

Use the following syntax to define the idnlgrey model object:
```

m = idnlgrey('filename',Order,Parameters)
m = idnlgrey('filename',Order,Parameters,InitialStates)
m = idnlgrey('filename',Order,Parameters,InitialStates,Ts)
m =
idnlgrey('filename',Order,Parameters,InitialStates,Ts,P1,V1, ...,PN,VN

```

The idnlgrey arguments are defined as follows:

\section*{idnlgrey}
- 'filename ' - Name of the function or MEX-file storing the model structure (ODE file).
- Order - Vector with three entries [Ny Nu Nx], specifying the number of model outputs Ny , the number of inputs Nu , and the number of states \(N x\).
- Parameters - Parameters, specified as struct arrays, cell arrays, or double arrays.
- InitialStates - Specified in a same way as parameters. Must be fourth input to the idnlgrey constructor.
- The command
\[
\begin{aligned}
m= & \text { idnlgrey('filename',Order, Parameters, ... } \\
& \text { InitialStates,Ts, P1,V1, ...,PN,VN) }
\end{aligned}
\]
specifies idnlgrey property-value pairs. See information on properties of idnlgrey objects below.

Estimate the parameters of this object using pem.
You can include property-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm properties.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model time unit
get(m,'TimeUnit')
m.TimeUnit

```

The following table summarizes idnlgrey model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference pages).
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Algorithm & \begin{tabular}{l}
A structure that specifies the estimation algorithm options, as \\
described in "idnlgrey Algorithm Properties" on page 2-198.
\end{tabular} \\
\hline CovarianceMatrix & \begin{tabular}{l}
Covariance matrix of the estimated Parameters. \\
Assignable values: \\
- 'None' to omit computing uncertainties and save time \\
during parameter estimation. \\
- 'Estimate' to estimation covariance. Symmetric and \\
positive \(N_{p}\)-by- \(N_{p}\) matrix (or []) where \(N_{p}\) is the number of \\
free model parameters.
\end{tabular} \\
\hline EstimationInfo & \begin{tabular}{l}
A read-only structure that stores estimation settings and \\
results, as described in "idnlgrey EstimationInfo Properties" \\
on page 2-207.
\end{tabular} \\
\hline FileArgument & \begin{tabular}{l}
Contains auxiliary variables passed to the ODE file (function \\
or MEX-file) specified in FileName. These variables may be \\
used as extra inputs for specifying the state and/or output \\
equations. FileArgument should be specified as a cell array. \\
Default: \{\}.
\end{tabular} \\
\hline FileName & \begin{tabular}{l}
File name string (without extension) or a function handle for \\
computing the states and the outputs. If 'FileName ' is a \\
string, then it must point to an MATLAB file or MEX-file. For \\
more information about the file variables, see "Specifying the \\
Nonlinear Grey-Box Model Structure".
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline InitialStates & \begin{tabular}{l}
An Nx-by-1 structure array with fields as follows. Here, Nx is the number of states of the model. \\
- Name: Name of the state (a string). Default value is 'x\#i', where \#i is an integer in [1, Nx]. \\
- Unit: Unit of the state (a string). Default value is ' ' . \\
- Value: Initial value of the initial state(s). Assignable values are: \\
- A finite real scalar \\
- A finite real 1-by-Ne vector, where Ne is the number of experiments in the data set to be used for estimation \\
- Minimum: Minimum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Minimum <= Value for all components. Default value: - Inf(size(Value)). \\
- Maximum: Maximum value of the initial state(s). Must be a real scalar/1-by-Ne vector of the same size as Value and such that Value <= Maximum for all components. Default value: Inf(size(Value)). \\
- Fixed: Specifies which component(s) of the initial state(s) are fixed to their known values. Must be a Boolean scalar/1-by-Ne vector of the same size as Value. Default value: true(size(Value)) (that is, do not estimate the initial states). \\
For an idnlgrey model \(M\), the ith initial state is accessed through M.InitialStates(i) and its subfields as M.InitialStates(i).FIELDNAME.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Order & \begin{tabular}{l}
Structure with following fields: \\
- ny - Number of outputs of the model structure. \\
- nu - Number of inputs of the model structure. \\
- \(n x\) - Number of states of the model structure. \\
For time series, nu is 0 . For static model structures, \(n x\) is 0 .
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Np-by- 1 structure array with information about the model parameters containing the following fields: \\
- Name: Name of the parameter (a string). Default value is 'p\#i', where \#i is an integer in [1, Np]. \\
- Unit: Unit of the parameter (a string). Default value is ' ' . \\
- Value: Initial value of the parameter(s). Assignable values are: \\
- A finite real scalar \\
- A finite real column vector \\
- A 2 -dimensional real matrix \\
- Minimum: Minimum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Minimum <= Value for all components. Default value: - Inf(size(Value)). \\
- Maximum: Maximum value of the parameter(s). Must be a real scalar/column vector/matrix of the same size as Value and such that Value <= Maximum for all components. Default value: \(\operatorname{Inf}(\) size (Value)). \\
- Fixed: Specifies which component(s) of the parameter(s) are fixed to their known values. Must be a Boolean scalar/column vector/matrix of the same size as Value.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline
\end{tabular}
\begin{tabular}{l}
\\
\hline
\end{tabular}

Default value: false(size(Value)), (estimate all parameter components).

For an idnlgrey model M, the ith parameter is accessed through M.Parameters(i) and its subfields as M.Parameters(i).FIELDNAME.

\section*{idnlgrey Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlgrey model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Advanced & A structure that specifies additional estimation algorithm options, as described in "idnlgrey Advanced Algorithm Properties" on page 2-201. \\
\hline Criterion & \begin{tabular}{l}
Specifies criterion used during minimization. Criterion can have the following values: \\
- 'Det': Minimize \(\operatorname{det}\left(E^{\prime *} E\right)\) where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. \\
- 'Trace': Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (\(E^{\prime *} E\)), or the traditional least-sum-of-squared-errors criterion. You can
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
specify the relative weighting of prediction errors for each \\
output using the Weighting field of the Algorithm property.
\end{tabular} \\
\hline LimitError & \begin{tabular}{l}
Robustification criterion that limits the influence of large \\
residuals, specified as a positive real value. Residual values \\
that are larger than 'LimitError' times the estimated \\
residual standard deviation have a linear cost instead of the \\
usual quadratic cost. \\
Default: 0 (no robustification).
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations for the estimation algorithm, \\
specified as a positive integer. \\
Default: 20.
\end{tabular} \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- 'Auto' — Automatically chooses from the following \\
methods.
\end{tabular} \\
- 'gn' — Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method. \\
- 'grad' — A gradient method. \\
- 'lm' — Levenberg-Marquardt method. \\
- 'lsqnonlin' - Nonlinear least-squares method (requires \\
the Optimization Toolbox product). This method handles
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline SimulationOptions & \begin{tabular}{l}
A structure that specifies the simulation method and related \\
options, as described in "idnlgrey Simulation Options" on page \\
\(2-203\).
\end{tabular} \\
\hline Display & \begin{tabular}{l}
Toggles displaying or hiding estimation progress information \\
in the MATLAB Command Window. \\
Default: 'Off'. \\
Assignable values:
\end{tabular} \\
\hline - 'Off' — Hide estimation information. \\
- 'On' — Display estimation information.
\end{tabular}

\section*{idnlgrey}

Note The Criterion property setting is meaningful in multiple-output cases only. In single-output models, the two criteria are equivalent. Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. The Det criterion can be interpreted as estimating the covariance matrix of the noise source and using the inverse of that matrix as the weighting. You should specify the weighting when using the Trace criterion.

If you want to achieve better accuracy for a particular channel in multiple-input multiple-output models, you should use Trace with weighting that favors that channel. Otherwise it is natural to use Det. When using Det you can check cond (model.NoiseVariance) after estimation. If the matrix is ill-conditioned, it may be more robust to use the Trace criterion. You can also use compare on validation data to check whether the relative error for different channels corresponds to your needs or expectations. Use the Trace criterion if you need to modify the relative errors, and check model. NoiseVariance to determine what weighting modifications to specify.

The search method of lsqnonlin supports the Trace criterion only.
idnlgrey
Advanced
Algorithm
Properties
The following table summarizes the fields of the Algorithm.Advanced model properties. The fields in the Algorithm.Advanced structure specify additional estimation-algorithm options.

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max (size (J)) *norm (J) *eps. Singular \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1e4. \\
Assign a positive, real value.
\end{tabular} \\
\hline LMStartValue & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) The starting \\
level of regularization when using the Levenberg-Marquardt \\
search method (Algorithm. SearchMethod= 'lm'). \\
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10.
\end{tabular} \\
Assign a real value >1.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16. \\
Assign a positive, real value.
\end{tabular} \\
\hline RelImprovement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than RelImprovement. \\
Default: 0. \\
Assign a positive real value.
\end{tabular} \\
\hline StepReduction & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin' '
\end{tabular} \\
\hline & \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value \\
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value >1.
\end{tabular} \\
\hline & \begin{tabular}{l}
Note Does not apply to \\
Algorithm. SearchMethod= 'lsqnonlin' ' \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
idnlgrey Simulation Options

The following table summarizes the fields of Algorithm.SimulationOptions model properties.
}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline AbsTol & \begin{tabular}{l}
Absolute error tolerance. This scalar applies to all components \\
of the state vector. AbsTol applies only to the variable step \\
solvers. \\
Default: 1 - -6.
\end{tabular} \\
Assignable value: A positive real value.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MinStep & \begin{tabular}{l}
(For variable-step time-continuous solvers) Specifies the \\
smallest time step of the ODE solver. \\
Default: 'Auto'. \\
Assignable values:
\end{tabular} \\
& - 'Auto' — Automatically chooses the time step. \\
& - A positive real value < MaxStep.
\end{tabular}

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & - 'ode4' — Fourth-order Runge-Kutta solver. \\
& - 'ode3' - Bogacki-Shampine solver. \\
& - 'ode2' - Heun or improved Euler solver. \\
& - 'ode1' - Euler solver. \\
& \begin{tabular}{l}
C. Fixed-step solvers for time-discrete idnlgrey models: \\
'FixedStepDiscrete' \\
D. General: 'Auto' — Automatically chooses one of the \\
previous solvers (default).
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlgrey Gradient Options}

The following table summarizes the fields of the Algorithm.GradientOptions model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline DiffMaxChange & \begin{tabular}{l}
Largest allowed parameter perturbation when computing \\
numerical derivatives. \\
Default: Inf. \\
Assignable value: A positive real value > 'DiffMinChange ' .
\end{tabular} \\
\hline DiffMinChange & \begin{tabular}{l}
Smallest allowed parameter perturbation when computing \\
numerical derivatives. \\
Default: 0.01*sqrt(eps). \\
Assignable value: A positive real value < 'DiffMaxChange ' . \\
\hline
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline DiffScheme & \begin{tabular}{l}
Method for computing numerical derivatives with respect to the components of the parameters and/or the initial state(s) to form the Jacobian. \\
Default: 'Auto' \\
Assignable values: \\
- 'Auto ' - Automatically chooses from the following methods. \\
- 'Central approximation' \\
- 'Forward approximation' \\
- 'Backward approximation'
\end{tabular} \\
\hline GradientType & \begin{tabular}{l}
Method used when computing derivatives (Jacobian) of the parameters or the initial states to be estimated. \\
Default: 'Auto'. \\
Assignable values: \\
- 'Auto' - Automatically chooses from the following methods. \\
- 'Basic' - Individually computes all numerical derivatives required to form each column of the Jacobian. \\
- 'Refined ' - Simultaneously computes all numerical derivatives required to form each column of the Jacobian.
\end{tabular} \\
\hline
\end{tabular}
idnlgrey EstimationInfo Properties

The following table summarizes the fields of the EstimationInfo model properties. The read-only fields of the EstimationInfo structure store estimation settings and results.

\section*{idnlgrey}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Names of the solver and the optimizer used during estimation. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to det (E' *E/N), where E is \\
the residual error matrix (one column for each output) and \\
N is the total number of samples. Provides a quantitative \\
description of the model quality.
\end{tabular} \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & Sampling interval of the estimation data. \\
\hline DataDomain & \begin{tabular}{l}
'Time' means time domain data. 'Frequency' is not \\
supported.
\end{tabular} \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation:
\end{tabular} \\
\hline - 'zoh' means zero-order-hold, or piecewise constant. \\
- 'foh' means first-order-hold, or piecewise linear.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline UpdateNorm & \begin{tabular}{l}
Norm of the search vector (Gauss-Newton vector) at the last \\
iteration. Empty when 'lsqnonlin' is the search method.
\end{tabular} \\
\hline Warning & Any warnings encountered during parameter estimation. \\
\hline WhyStop & Reason for terminating parameter estimation iterations. \\
\hline
\end{tabular}

\section*{Definition \\ of idnlgrey States}

The states of an idnlgrey model are defined explicitly by the user in the function or MEX-file (as specified in the FileName property of the model) storing the model structure. The concept of states is useful for functions such as sim, predict, compare, and findstates.

Note The initial values of the states are configured by the InitialStates property of the idnlgrey model.

\section*{See Also}

\section*{pem}
getinit
setinit
getpar
setpar

\section*{idnlhw}

\section*{Purpose Hammerstein-Wiener model}
```

Syntax $\quad m=i d n l h w\left(\left[\begin{array}{lll}n b & n f & n k\end{array}\right]\right)$
$m=i d n l h w([n b$ nf nk],InputNL,OutputNL)
m = idnlhw([nb nf nk],InputNL,OutputNL,'PropertyName',
PropertyValue)
$m$ = idnlhw(LinModel)
m = idnlhw(LinModel,InputNL,OutputNL)
m = idnlhw(LinModel,InputNL,OutputNL,'PropertyName',
PropertyValue)

```

\section*{Description}

Represents Hammerstein-Wiener models. The Hammerstein-Wiener structure represents a linear model with input-output nonlinearities.

Typically, you use the nlhw command to both construct the idnlhw object and estimate the model parameters. You can configure the model properties directly in the nlhw syntax. For information about the Hammerstein-Wiener model structure, see "Structure of Hammerstein-Wiener Models".

You can also use the idnlhw constructor to create the Hammerstein-Wiener model structure and then estimate the parameters of this model using pem.

For idnlhw object properties, see:
- "idnlhw Model Properties" on page 2-213
- "idnlhw Algorithm Properties" on page 2-214
- "idnlhw Advanced Algorithm Properties" on page 2-218
- "idnlhw EstimationInfo Properties" on page 2-220

\section*{Construction}
\(m=i d n l h w([n b\) nf \(n k])\) creates an idnlhw object using default piecewise linear functions for the input and output nonlinearity estimators. \(n b, n f\), and \(n k\) are positive integers that specify model orders and delays. \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay.
\(m\) = idnlhw([nb nf nk],InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\(m=\) idnlhw([nb nf
nk],InputNL,OutputNL, 'PropertyName', PropertyValue) creates the object using options specified as idnlhw property name and value pairs. Specify PropertyName inside single quotes.
\(m=\) idnlhw(LinModel) uses a linear model (in place of [nb nf nk]) and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete time input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)) for single-output systems, and idss model with \(K=0\) for multi-output systems. LinModel sets the model orders, input delay, \(B\) and \(F\) polynomial values, input-output names and units, sampling time, and time units of \(m\).
\(m=\) idnlhw(LinModel,InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL.
\(m=\)
idnlhw(LinModel, InputNL, OutputNL, 'PropertyName', PropertyValue) creates the object using options specified as idnlhw property name and value pairs.

\section*{Input Arguments}
\(n b, n f, n k\)
Model orders and input delay, where \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay.
For nu inputs and ny outputs, nb, nf, and, nk are ny-by-nu matrices whose \(i\)-jth entry specifies the orders and delay of the transfer function from the \(j\) th input to the \(i\) th output.

\footnotetext{
InputNL, OutputNL
}

\section*{idnlhw}

Input and output nonlinearity estimators, respectively, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\begin{tabular}{ll}
'pwlinear' or pwlinear object (default) & \begin{tabular}{l}
Piecewise linear \\
function
\end{tabular} \\
'sigmoidnet' or sigmoidnet object & \begin{tabular}{l}
Sigmoid \\
network
\end{tabular} \\
'wavenet' or wavenet object & \begin{tabular}{l}
Wavelet \\
network
\end{tabular} \\
'saturation' or saturation object & Saturation \\
'deadzone' or deadzone object & Dead zone \\
'poly1d' or poly1d object & \begin{tabular}{l}
One-dimensional \\
polynomial
\end{tabular} \\
'unitgain' or unitgain object & Unit gain \\
customnet object & Custom network
\end{tabular}

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.
For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

\section*{LinModel}

Discrete time linear model, typically estimated using the oe or n4sid command:
- Input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)), for single-output systems
idnlhw
Model Properties
- State-space model with no disturbance component (idss model with \(K=0\)), for multi-output systems

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% Get the model B parameters
get(m,'b')
% Get value of InputNonlinearity property
m.InputNonlinearity

```

You can specify property name-value pairs in the model estimator or constructor to specify the model structure and estimation algorithm.

The following table summarizes idnlhw model properties. The general idnlmodel properties also apply to this nonlinear model object (see the corresponding reference page).
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Algorithm & \begin{tabular}{l}
A structure that specifies the estimation algorithm options, as \\
described in "idnlhw Algorithm Properties" on page 2-214.
\end{tabular} \\
\hline b & \begin{tabular}{l}
B polynomial as a cell array of Ny-by-Nu elements, where Ny \\
is the number of outputs and Nu is the number of inputs. An \\
element b \(\{\mathrm{i}, \mathrm{j}\}\) \\
poly a row vector representing the numerator for the jth input to ith output transfer function. It \\
contains as many leading zeros as there are input delays.
\end{tabular} \\
\hline f & \begin{tabular}{l}
F polynomial as a cell array of Ny-by-Nu elements, where Ny is \\
the number of outputs and Nu is the number of inputs. An \\
element f\{i, j\} is a row vector representing the denominator \\
polynomial for the j:th input to ith output transfer function.
\end{tabular} \\
\hline LinearModel & \begin{tabular}{l}
(Read only) The linear model in the linear block. For single \\
output, represented as an idpoly object. For multiple output, \\
represented as an idss object.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline EstimationInfo & \begin{tabular}{l}
(Read-only) Structure that stores estimation settings and \\
results, as described in "idnlhw EstimationInfo Properties" \\
on page 2-220.
\end{tabular} \\
\hline InputNonlinearity & \begin{tabular}{l}
Nonlinearity estimator object. Assignable values include \\
pwlinear (default), deadzone, wavenet, saturation, \\
customnet, sigmoidnet, poly1d, and unitgain. For more \\
information, see the corresponding reference pages.
\end{tabular} \\
& \begin{tabular}{l}
For ny outputs, Nonlinearity is an ny-by-1 array, such as \\
[sigmoidnet; wavenet]. However, if you specify a scalar \\
object, this nonlinearity object applies to all outputs.
\end{tabular} \\
\hline OutputNonlinearity & \begin{tabular}{l}
Same as InputNonlinearity. \\
\hline nb \\
\(n f\) \\
\(n k\)
\end{tabular} \\
\begin{tabular}{l}
Model orders and input delays, where nb is the number of \\
zeros plus 1, nf is the number of poles, and nk is the delay \\
from input to output in terms of the number of samples.
\end{tabular} \\
For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu \\
matrices whose \(i\)-jth entry specifies the orders and delay of the \\
transfer function from the \(j\) th input to the ith output.
\end{tabular},

\section*{idnlhw Algorithm Properties}

The following table summarizes the fields of the Algorithm idnlhw model properties. Algorithm is a structure that specifies the estimation-algorithm options.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline Advanced & A structure that specifies additional estimation algorithm options, as described in "idnlhw Advanced Algorithm Properties" on page 2-218. \\
\hline Criterion & \begin{tabular}{l}
The search method of lsqnonlin supports the Trace criterion only. \\
Use for multiple-output models only. Criterion can have the following values: \\
- 'Det': Minimize \(\operatorname{det}\left(E^{\prime *} \mathrm{E}\right)\), where E represents the prediction error. This is the optimal choice in a statistical sense and leads to the maximum likelihood estimates in case nothing is known about the variance of the noise. It uses the inverse of the estimated noise variance as the weighting function. This is the default criterion used for all models, except idnlgrey which uses 'Trace' by default. \\
- 'Trace': Minimize the trace of the weighted prediction error matrix trace (\(E^{\prime} * E^{*} W\)), where \(E\) is the matrix of prediction errors, with one column for each output, and \(W\) is a positive semi-definite symmetric matrix of size equal to the number of outputs. By default, W is an identity matrix of size equal to the number of model outputs (so the minimization criterion becomes trace (\(E^{\prime *}\) E), or the traditional least-squares criterion). You can specify the relative weighting of prediction errors for each output using the Weighting field of the Algorithm property. If the model contains neuralnet or treepartition as one of its nonlinearity estimators, weighting is not applied because estimations are independent for each output. \\
Both the Det and Trace criteria are derived from a general requirement of minimizing a weighted sum of least squares of prediction errors. Det can be interpreted as estimating the covariance matrix of the noise source and using the inverse of
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
that matrix as the weighting. You should specify the weighting \\
when using the Trace criterion. \\
If you want to achieve better accuracy for a particular channel \\
in MIMO models, use Trace with weighting that favors \\
that channel. Otherwise, use Det. If you use Det, check \\
cond (model. NoiseVariance) after estimation. If the matrix \\
is ill-conditioned, try using the Trace criterion. You can also \\
use compare on validation data to check whether the relative \\
error for different channels corresponds to your needs or \\
expectations. Use the Trace criterion if you need to modify the \\
relative errors, and check model. NoiseVariance to determine \\
what weighting modifications to specify.
\end{tabular} \\
\hline IterWavenet & \begin{tabular}{l}
(For wavenet nonlinear estimator only) \\
Implicitly set to perform iterative estimation. Changing this \\
setting does not impact the algorithm. \\
Default: 'On'.
\end{tabular} \\
\hline LimitError & \begin{tabular}{l}
Robustification criterion that limits the influence of large \\
residuals, specified as a positive real value. Residual values \\
that are larger than 'LimitError ' times the estimated \\
residual standard deviation have a linear cost instead of the \\
usual quadratic cost. \\
Default: 0 (no robustification).
\end{tabular} \\
\hline MaxIter & \begin{tabular}{l}
Maximum number of iterations for the estimation algorithm, \\
specified as a positive integer. \\
Default: 20.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline MaxSize & \begin{tabular}{l}
The number of elements (size) of the largest matrix to be \\
formed by the algorithm. Computational loops are used for \\
larger matrices. Use this value for memory/speed trade-off. \\
MaxSize can be any positive integer. Default: 250000.
\end{tabular} \\
& \begin{tabular}{l}
Note The original data matrix of \(u\) and \(y\) must be smaller \\
than MaxSize.
\end{tabular} \\
\hline SearchMethod & \begin{tabular}{l}
Method used by the iterative search algorithm. \\
Assignable values:
\end{tabular} \\
- 'Auto' - Automatically chooses from the following \\
methods. \\
- 'gn' — Gauss-Newton method. \\
- 'gna' — Adaptive Gauss-Newton method. \\
- 'grad' — A gradient method. \\
- 'lm' — Levenberg-Marquardt method. \\
- 'lsqnonlin' — Nonlinear least-squares method (requires \\
the Optimization Toolbox product). This method handles \\
only the 'Trace ' criterion.
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Display & \begin{tabular}{l}
Toggles displaying or hiding estimation progress information \\
in the MATLAB Command Window. \\
Default: 'Off'. \\
Assignable values: \\
- 'Off ' - Hide estimation information. \\
- 'On' - Display estimation information.
\end{tabular} \\
\hline Weighting & \begin{tabular}{l}
Positive semi-definite matrix W used for weighted trace \\
minimization. When Criterion \(=\) 'Trace', trace (E'*E*W) \\
is minimized. Weighting can be used to specify relative \\
importance of outputs in multiple-input multiple-output \\
models (or reliability of corresponding data) when W is a \\
diagonal matrix of nonnegative values. Weighting is not \\
useful in single-output models. By default, Weighting is an \\
identity matrix of size equal to the number of outputs.
\end{tabular} \\
\hline
\end{tabular}

\section*{idnlhw Advanced Algorithm Properties}

The following table summarizes the fields of the Algorithm. Advanced model properties. The fields in the Algorithm. Advanced structure specify additional estimation-algorithm options.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline GnPinvConst & \begin{tabular}{l}
When the search direction is computed, the algorithm \\
discards the singular values of the Jacobian that are smaller \\
than GnPinvConst*max \((\text { size }(J))^{*}\) norm \((J) * e p s . ~ S i n g u l a r ~\)
\end{tabular} \\
values that are closer to 0 are included when GnPinvConst is \\
decreased. \\
Default: 1e4. \\
Assign a positive, real value.
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
Default: 0.001. \\
Assign a positive real value.
\end{tabular} \\
\hline LMStep & \begin{tabular}{l}
(For Levenberg-Marquardt search algorithm) Try this next \\
level of regularization to get a lower value of the criterion \\
function. The level of regularization is LMStep times the \\
previous level. At the start of a new iteration, the level of \\
regularization is computed as 1/LMStep times the value from \\
the previous iteration. \\
Default: 10. \\
Assign a real value >1.
\end{tabular} \\
\hline MaxBisections & \begin{tabular}{l}
Maximum number of bisections performed by the line search \\
algorithm along the search direction (number of rotations of \\
search vector for ' lm '). Used by 'gn', ' lm', 'gna' and 'grad' \\
search methods (Algorithm. SearchMethod property). \\
Default: 10. \\
Assign a positive integer value.
\end{tabular} \\
\hline MaxFunEvals & \begin{tabular}{l}
The iterations are stopped if the number of calls to the model \\
file exceeds this value. \\
Default: Inf. \\
Assign a positive integer value.
\end{tabular} \\
\hline MinParChange & \begin{tabular}{l}
The smallest parameter update allowed per iteration. \\
Default: 1e-16.
\end{tabular} \\
Assign a positive, real value.
\end{tabular}

\section*{idnlhw}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Rel Improvement & \begin{tabular}{l}
The iterations are stopped if the relative improvement of the \\
criterion function is less than Rel Improvement. \\
Default: 0. \\
Assign a positive real value. \\
\hline StepReduction \\
\\
\begin{tabular}{l}
Note This does not apply when \\
Algorithm. SearchMethod= ' lsqnonlin '.
\end{tabular} \\
\hline \begin{tabular}{l}
(For line search algorithm) The suggested parameter update \\
is reduced by the factor 'StepReduction' after each try until \\
either 'MaxBisections' tries are completed or a lower value \\
of the criterion function is obtained. \\
Default: 2. \\
Assign a positive, real value >1.
\end{tabular} \\
\hline \begin{tabular}{l}
Note This does not apply when \\
Algorithm. SearchMethod= ' lsqnonlin '.
\end{tabular} \\
\hline
\end{tabular} \\
\hline
\end{tabular}
idnlhw EstimationInfo Properties

The following table summarizes the fields of the EstimationInfo model properties. The read-only fields of the EstimationInfo structure store estimation settings and results.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Status & Shows whether the model parameters were estimated. \\
\hline Method & Shows the estimation method. \\
\hline LossFcn & \begin{tabular}{l}
Value of the loss function, equal to \(\operatorname{det}\left(E^{\prime} * E / N\right)\), where \(E\) is \\
the residual error matrix (one column for each output) and \(N\) is \\
the total number of samples.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline FPE & Value of Akaike's Final Prediction Error (see fpe). \\
\hline DataName & Name of the data from which the model is estimated. \\
\hline DataLength & Length of the estimation data. \\
\hline DataTs & Sampling interval of the estimation data. \\
\hline DataDomain & \begin{tabular}{l}
'Time' means time domain data. 'Frequency ' is not \\
supported.
\end{tabular} \\
\hline DataInterSample & \begin{tabular}{l}
Intersample behavior of the input estimation data used for \\
interpolation:
\end{tabular} \\
\hline - 'zoh' means zero-order-hold, or piecewise constant. \\
- 'foh' means first-order-hold, or piecewise linear.
\end{tabular}

\section*{Definitions Hammerstein-Wiener Model Structure}

This block diagram represents the structure of a Hammerstein-Wiener model:

\section*{idnlhw}

where:
- \(w(t)=f(u(t))\) is a nonlinear function transforming input data \(u(t) . w(t)\) has the same dimension as \(u(t)\).
- \(x(t)=(B / F) w(t)\) is a linear transfer function. \(x(t)\) has the same dimension as \(y(t)\).
where \(B\) and \(F\) are similar to polynomials in the linear Output-Error model, as described in "What Are Black-Box Polynomial Models?".
For \(n y\) outputs and \(n u\) inputs, the linear block is a transfer function matrix containing entries:
\[
\frac{B_{j, i}(q)}{F_{j, i}(q)}
\]
where \(j=1,2, \ldots, n y\) and \(i=1,2, \ldots, n u\).
- \(y(t)=h(x(t))\) is a nonlinear function that maps the output of the linear block to the system output.
\(w(t)\) and \(x(t)\) are internal variables that define the input and output of the linear block, respectively.
Because \(f\) acts on the input port of the linear block, this function is called the input nonlinearity. Similarly, because \(h\) acts on the output port of the linear block, this function is called the output nonlinearity. If system contains several inputs and outputs, you must define the functions \(f\) and \(h\) for each input and output signal.

You do not have to include both the input and the output nonlinearity in the model structure. When a model contains only the input nonlinearity \(f\), it is called a Hammerstein model. Similarly, when the model contains only the output nonlinearity \(h\)), it is called a Wiener model.

The nonlinearities \(f\) and \(h\) are scalar functions, one nonlinear function for each input and output channel.
The Hammerstein-Wiener model computes the output \(y\) in three stages:
1 Computes \(w(t)=f(u(t))\) from the input data.
\(w(t)\) is an input to the linear transfer function \(B / F\).
The input nonlinearity is a static (memoryless) function, where the value of the output a given time \(t\) depends only on the input value at time \(t\).

You can configure the input nonlinearity as a sigmoid network, wavelet network, saturation, dead zone, piecewise linear function, one-dimensional polynomial, or a custom network. You can also remove the input nonlinearity.

2 Computes the output of the linear block using \(w(t)\) and initial conditions: \(x(t)=(B / F) w(t)\).

You can configure the linear block by specifying the numerator \(B\) and denominator \(F\) orders.

3 Compute the model output by transforming the output of the linear block \(x(t)\) using the nonlinear function \(h: y(t)=h(x(t))\).

Similar to the input nonlinearity, the output nonlinearity is a static function. Configure the output nonlinearity in the same way as the input nonlinearity. You can also remove the output nonlinearity, such that \(y(t)=x(t)\).

Resulting models are idnlhw objects that store all model data, including model parameters and nonlinearity estimator. See the idnlhw reference page for more information.

\section*{idnlhw States}

This toolbox requires states for simulation and prediction using sim(idnlhw), predict(idnlhw), and compare. States are also

\section*{idnlhw}
necessary for linearization of nonlinear ARX models using linearize(idnlhw). This toolbox provides a number of options to facilitate how you specify the initial states. For example, you can use findstates and data2state to automatically search for state values in simulation and prediction applications. For linearization, use findop. You can also specify the states manually.

The states of the Hammerstein-Wiener model correspond to the states of the linear block in the Hammerstein-Wiener model structure:

The linear block contains all the dynamic elements of the model. If this linear model is not a state-space structure, the states are defined as those of model Mss, where Mss = idss(Model.LinearModel) and Model is the idnlhw object.

\section*{Examples}

Create default Hammerstein-Wiener model structure:
```

    m = idnlhw([2 2 1]) % na=nb=2 and nk=1
    % m has piecewise linear input and output nonlinearity

```

Create nonlinear ARX model structure with sigmoid network nonlinearity:
```

m=idnlarx([2 3 1],sigmoidnet('Num',15))
% number of units is 15

```

Create Hammerstein-Wiener model with specific input-output nonlinearities:
```

    m=idnlhw([2 2 1],'sigmoidnet','deadzone')
    % Equivalent to m=idnlhw([2 2 1],'sig','dead')
% Nonlinearities have default configuration

```

Create Hammerstein-Wiener model and configure the nonlinearity objects:
```

m=idnlhw([2 2 1],sigmoidnet('num',5),deadzone([-1,2]))

```

Create a Hammerstein model (no output nonlinearity):
```

m=idnlhw([2 2 1],'saturation',[])
% [] specifies unitgain output nonlinearity

```

Configure the Hammerstein-Wiener model and estimate models parameters:
```

m0 = idnlhw([nb,nf,nk],[sigmoidnet;pwlinear],[]);
m = pem(data,mO); % equivalent to m=nlhw(data,mO)

```

Construct default Hammerstein-Wiener model using an input-output polynomial model of Output-Error structure:
```

% Construct an input-output polynomial model of OE structure.
B = [0.8 1];
F = [1 -1.2 0.5];
LinearModel = idpoly(1, B, 1,1, F, 'Ts', 0.1);
% Construct Hammerstein-Wiener model using OE model
% as its linear component.
m1 = idnlhw(LinearModel, 'saturation', [])

```

\section*{See Also}
customnet | linear | linearize(idnlhw) | nlhw | pem | poly1d | saturation | sigmoidnet | wavenet | saturation

\section*{idnlhw}

Tutorials

How To
- "Example - Using nlhw to Estimate Hammerstein-Wiener Models"
- "Example - Using Linear OE Models to Estimate Hammerstein-Wiener Models"
- "Identifying Hammerstein-Wiener Models"
- "Using Linear Model for Hammerstein-Wiener Estimation"

\section*{Purpose \\ Description}

Superclass for nonlinear models

You do not use the idnlmodel class directly. Instead, idnlmodel defines the common properties and methods inherited by its subclasses, idnlarx, idnlgrey, and idnlhw.
idnlmodel Properties

The following table lists the properties shared by the idnlarx, idnlgrey, and idnlhw, defined in terms of Ny outputs and Nu inputs.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline InputName & \begin{tabular}{l}
Specifies the names of individual input channels. \\
Default: \{'u1' ; 'u2' ; . . ; ' uNu' \}.
\end{tabular} \\
& \begin{tabular}{l}
Assignable values: \\
- For single-output models, a string. For example, 'torque '. \\
- For multiple-output models, an nu-by-1 cell array. For \\
example: \\
\{'thrust '; 'aileron deflection' \}
\end{tabular} \\
\hline InputUnit & \begin{tabular}{l}
Specifies the units of each input channel. \\
Default: ' '.
\end{tabular} \\
& \begin{tabular}{l}
Assignable values: \\
- For single-output models, a string. For example, 'm/s '. \\
- For multiple-output models, an nu-by-1 cell array.
\end{tabular} \\
\hline Name & Name of the model, specified as a string.
\end{tabular}

\section*{idnImodel}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline OutputName & \begin{tabular}{l}
Specifies the names of individual output channels. \\
Default: \(\{\) 'y1' ; 'y2' \(; \ldots ;\) ' yNy' \(\}\). \\
Assignable values:
\end{tabular} \\
& \begin{tabular}{l}
- For single-output models, a string. For example, ' torque '. \\
- For multiple-output models, an ny-by-1 cell array. For \\
example: \\
\{'thrust'; 'aileron deflection' \(\}\)
\end{tabular} \\
\hline OutputUnit & \begin{tabular}{l}
Specifies the units of each output channel. \\
Default: ' '. \\
Assignable values:
\end{tabular} \\
\hline - For single-output models, a string. For example, 'm/s'. \\
- For multiple-output models, an ny-by-1 cell array.
\end{tabular}

\section*{See Also}
idnlarx
idnlgrey
idnlhw

\section*{idpoly}

\section*{Purpose Linear polynomial input-output model}

\section*{Syntax \\ Description}
```

m = idpoly(A,B)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts)
m = idpoly(A,B,C,D,F,NoiseVariance,Ts,'Property1', Value1,...
'PropertyN', ValueN)
m = idpoly(mi)

```
idpoly creates a model object containing parameters that describe the general multiple-input single-output model structure.
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
\(A, B, C, D\), and \(F\) are the polynomial coefficients. For more information, see "What Are Black-Box Polynomial Models?".

Specify \(A, C\), and \(D\) as row vectors that start with 1 . For example,
\[
A=\left[\begin{array}{lll}
1 & \text { a1 } & \text { a2 }
\end{array}\right.
\]
consequently describes
\[
A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a}
\]

For single-input systems, specify \(B\) as a row vector that contains leading zeros to indicate the delays and \(F\) as a row vector that starts with 1.

For multiple-input systems, specify \(B\) and \(F\) using cell arrays of Nu row vectors or double matrices with Nu rows, where Nu is the number of inputs. Double matrix support will be removed in a future version. Use cell array format instead. You can switch between double and cell array formats after creating the model using the setPolyFormat command.

For time series, enter \(B\) and \(F\) as empty matrices.
\[
B=[] ; \quad F=[] ;
\]

NoiseVariance is the variance of the white noise sequence \(e(t)\), while Ts is the sampling interval.

Trailing arguments \(C, D, F\), NoiseVariance, and Ts can be omitted, in which case they are taken as 1 . (If \(B=[]\), then \(F\) is taken as [].) The property name/property value pairs can start directly after \(B\).

Ts = 0 means that the model is a continuous-time one. Then the interpretation of the arguments is that
\[
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4
\end{array}\right]
\]
corresponds to the polynomial \(s^{3}+2 s^{2}+3 s+4\) in the Laplace variable \(s\), and so on. For continuous-time systems, NoiseVariance indicates the level of the spectral density of the innovations. A sampled version of the model has the innovations variance NoiseVariance/Ts, where Ts is the sampling interval. The continuous-time model must have a white noise component in its disturbance description. See "Spectrum Normalization".

For discrete-time models (Ts > 0), note the following: idpoly strips any trailing zeros from the polynomials when determining the orders. It also strips leading zeros from the \(B\) polynomial to determine the delays. Keep this in mind when you use idpoly and polydata to modify earlier estimates to serve as initial conditions for estimating new structures.
idpoly can also take any single-output idmodel or LTI object mi as an input argument. If an LTI system has an input group with name 'Noise ', these inputs are interpreted as white noise with unit variance, and the noise model of the idpoly model is computed accordingly.

\section*{Properties} na, nb, nc, nd, nf, nk

Orders and delays of the polynomials, specified as integers or row vectors of integers.
a, c, d
\(A, C\), and \(D\) polynomials, specified as row vectors.
b, f

\section*{idpoly}
\(B\) and \(F\) polynomials, specified as:
- Row vectors for single-input systems.
- Multi-row double matrices or cell arrays for multi-input systems, depending on how you specify the polynomials during construction. Double matrix support will be removed in a future version. Use cell array format instead. You can switch between double and cell array formats after creating the model using setPolyFormat.
```

da, db, dc, dd, df

```

The estimated standard deviation of the polynomials. Cannot be set.
'InitialState'
How to deal with the initial conditions that are required to compute the prediction of the output. Possible values are:
\begin{tabular}{ll}
'Estimate' & \begin{tabular}{l}
The necessary initial states \\
are estimated from data as \\
extra parameters.
\end{tabular} \\
'Backcast' & \begin{tabular}{l}
The necessary initial states \\
are estimated by a backcasting \\
(backward filtering) process, \\
described in Knudsen (1994).
\end{tabular} \\
'Zero' & \begin{tabular}{l}
All initial states are taken as \\
zero.
\end{tabular} \\
'Auto' (default) & \begin{tabular}{l}
An automatic choice among \\
the above is made, guided by \\
the data.
\end{tabular}
\end{tabular}

In addition, any idpoly object also has all the properties of idmodel. See idmodel properties and Algorithm Properties.

Note that you can set or retrieve all properties either with the set and get commands or by subscripts. Autofill applies to all properties and values, and these are case insensitive.
```

m.a=[1 -1.5 0.7];
set(m,'ini','b')
p = roots(m.a)

```

For a complete list of property values, use get (m). To see possible value assignments, use set(m).

\section*{Examples}

Create a polynomial model of ARMAX structure:
\[
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
1 & -1.5 & 0.7
\end{array}\right] ; \\
& \mathrm{B}=\left[\begin{array}{ccc}
0 & 1 & 0.5
\end{array}\right] ; \\
& \mathrm{C}=\left[\begin{array}{ccc}
1 & -1 & 0.2
\end{array}\right] ; \\
& \mathrm{mO}=\text { idpoly }(\mathrm{A}, \mathrm{~B}, \mathrm{C}) ;
\end{aligned}
\]

This gives a system with one delay (\(n k=1\)).

Create, discretize and simulate the following continuous-time multi-input polynomial model:
```

y(t)=\frac{1}{s(s+1)}\mp@subsup{u}{1}{}(t)+\frac{s+3}{\mp@subsup{s}{}{2}+2s+4}\mp@subsup{u}{2}{}(t)+e(t)
% Create multi-input Output Error (OE) model.
B={[0 1],[$$
\begin{array}{ll}{1}&{3}\end{array}
$$};
F={[$$
\begin{array}{lll}{1}&{1}&{0}\end{array}
$$],[$$
\begin{array}{lll}{1}&{2}&{4}\end{array}
$$]}
m = idpoly(1,B,1,1,F,1,0)
% Discretize the model using sampling time T = 0.1s.
md = c2d(m,0.1)
% Simulate the model without noise.
% u1 and u2 are double vectors representing input signals.
y = sim(md,[u1 u2])

```

\section*{idpoly}

Note that, when you simulate the model, the continuous-time model is automatically sampled to the sampling interval of the data. So the discretization and simulation operations are also achieved using the following commands:
\[
\begin{aligned}
& u=\operatorname{iddata}([],[u 1 \quad u 2], 0.1) \\
& y=\operatorname{sim}(m, u)
\end{aligned}
\]
```

idpoly Definition of States

```

\section*{References}

See Also
idss | sim
How To . "Identifying Input-Output Polynomial Models"
- "Extracting Parameter Values from Linear Models"
- "Using Linear Model for Nonlinear ARX Estimation"
- "Using Linear Model for Hammerstein-Wiener Estimation"

\section*{Purpose}

Linear, low-order, continuous-time transfer function

\section*{Syntax \\ Description}
m = idproc(Type)
m = idproc(Type,'Property1',Value1,...,'PropertyN',ValueN)
\(\mathrm{m}=\mathrm{pem}(\) Data,Type) \% to directly estimate an idproc model
The function idproc is used to create typical simple, continuous-time
process models as idproc objects. The model has one output, but can have several inputs.

The character of the model is defined by the argument Type. This is an acronym made up of the following symbols:
- P: All 'Type' acronyms start with this letter.
- \(0,1,2\), or 3 : This integer denotes the number of time constants (poles) to be modeled. Possible integrations (poles in the origin) are not included in this number.
- I: The letter I is included to mark that an integration is enforced (self-regulation process).
- D: The letter D is used to mark that the model contains a time delay (dead time).
- Z: The letter Z is used to mark an extra numerator term: a zero.
- U: The letter U is included to mark that underdamped modes (complex-valued poles) are permitted. If U is not included, all poles are restricted to be real.

This means, for example, that Type = 'P1D' corresponds to the model with transfer function
\[
G(s)=\frac{K_{p}}{1+s T_{p 1}} e^{-T_{d} s}
\]
while Type = 'POI' is

\section*{idproc}
\[
G(s)=\frac{K_{p}}{s}
\]
and Type = 'P3UZ' is
\[
G(s)=K_{p} \frac{1+T_{z} s}{\left(1+2 \varsigma T_{\omega} s+\left(T_{\omega} s\right)^{2}\right)\left(1+T_{p 3} s\right)}
\]

For multiple-input systems, Type is a cell array where each cell describes the character of the model from the corresponding input, like Type = \{'P1D' 'POI'\} for the two-input model
\[
Y(s)=\frac{K_{p}(1)}{1+s T_{p 1}(1)} e^{-T_{d} s} U_{1}(s)+\frac{K_{p}(2)}{s} U_{2}(s)
\]

The parameters of the model are
- Kp: The static gain
- Tp1, Tp2, Tp3: The real-time constants (corresponding to poles in 1/Tp1, etc.)
- Tw and Zeta: The "resonance time constant" and the damping factor corresponding to a denominator factor (1+2 Zeta Tw s + (Tw s)^2). If underdamped modes are allowed, Tw and Zeta replace Tp1 and Tp2. A third real pole, Tp3, could still be included.
- Td: The time delay
- Tz: The numerator zero

These properties contain fields that give the values of the parameters, upper and lower bounds, and information whether they are locked to zero, have a fixed value, or are to be estimated. For multiple-input models, the number of entries in these fields equals the number of inputs. This is described in more detail below.
The idproc object is a child of idmodel. Therefore any idmodel properties can be set as property name/property value pairs in the
idproc command. They can also be set by the command set, or by subassignment, as in
```

m.InputName = {'speed','voltage'}
m.kp = 12

```

In the multiple-input case, models for specific inputs can be obtained by regular subreferencing.
```

m(ku)

```

There are also two properties, DisturbanceModel and InitialState, that can be used to expand the model. See below.

\section*{idproc Properties}
- Type: A string or a cell array of strings with as many elements as there are inputs. The string is an acronym made up of the characters \(\mathrm{P}, \mathrm{Z}, \mathrm{I}, \mathrm{U}, \mathrm{D}\) and an integer between 0 and 3 . The string must start with P, followed by the integer, while possible other characters can follow in any order. The integer is the number of poles (not counting a possible integration), \(Z\) means the inclusion of a numerator zero, D means inclusion of a time delay, while \(U\) marks that the modes can be underdamped (a pair of complex conjugated poles). I means that an integration in the model is enforced.
- Kp, Tp1, Tp2, Tp3, Tw, Zeta, Tz, Td: These are the parameters as explained above. Each of these is a structure with the following fields:
- value: Numerical value of the parameter.
- max: Maximum allowed value of the parameter when it is estimated.
- min: Minimum allowed value of the parameter when it is estimated. For multiple-input models, these are row vectors.
- status: Assumes one of 'Estimate', 'Fixed', or 'Zero'.
'Zero' means that the parameter is locked to zero and not included in the model. Assigning, for example, Type = 'P1' means that the status of Tp2, Tp3, Tw, and Zeta will be 'Zero'.

\section*{idproc}

The value 'Fixed' means that the parameter is fixed to its value, and will not be estimated.

The value 'Estimate' means that the parameter value should be estimated.

For multiple-input modes, status is a cell array with one element for each input, while value, max, and min are row vectors.
- DisturbanceModel: Allows an additive disturbance model as in
\[
y(t)=G(s) u(t)+\frac{C(s)}{D(s)} e(t)
\]
where \(G(s)\) is a process model and \(e(t)\) is white noise, and \(C / D\) is a first- or second-order transfer function.

DisturbanceModel can assume the following values:
- 'None': This is the default. No disturbance model is included (that is, \(C=D=1\)).
- 'arma1': The disturbance model is a first-order ARMA model (that is, \(C\) and \(D\) are first-order polynomials).
- 'arma2' or 'Estimate': The disturbance model is a second-order ARMA model (that is, \(C\) and \(D\) are second-order polynomials).

When a disturbance model has been estimated, the property DisturbanceModel is returned as a cell array, with the first entry being the status as just defined, and the second entry being the actual model, delivered as a continuous-time idpoly object.
- InitialState: Affects the parameterization of the initial values of the states of the model. It assumes the same values as for other models:
- 'Zero': The initial states are fixed to zero.
- 'Estimate': The initial states are treated as parameters to be estimated.
- 'Backcast': The initial state vector is adjusted, during the parameter estimation step, to a suitable value, but it is not stored.
- 'Auto': Makes a data-dependent choice among the values above.
- InputLevel: The offset level of the input signal(s). This is of particular importance for those input channels that contain an integration. InputLevel will then define the level from which the integration takes place, and that cannot be handled by estimating initial states. InputLevel has the same structure as the model parameters Kp, etc., and thus contains the following fields:
- value: Numerical value of the parameter. For multiple-input models, this is a row vector.
- max: Maximum allowed value of the parameter when it is estimated.
- min: Minimum allowed value of the parameter when it is estimated. For multiple-input models, these are row vectors.
- status: Assumes one of 'Estimate', 'Fixed', or 'Zero' with the same interpretations.

In addition, any idproc object also has all the properties of idmodel. See Algorithm Properties, EstimationInfo, and idmodel.
Note that all properties can be set or retrieved using either the set and get commands or subscripts. Autofill applies to all properties and values, and these are case insensitive. Also 'u' and 'y' are short for 'Input' and 'Output', respectively. You can also set all properties at estimation time as property name/property value pairs in the call to pem. An extended syntax allows direct setting of the fields of the parameter values, so that assigning a numerical value is automatically attributed to the value field, while a string is attributed to the status field.
```

m.kp = 10 % Alternative for m.Kp.value = 10
m.Tp1 = 'estimate' % Alternative for
% m.Tp1.status = {'estimate'}
% Initializing the parameter Kp at the value 10
m = pem(Data,'P1D','kp',10)

```

\section*{idproc}
```

% Fixing the parameter Kp to the value 10
m = pem(Data,'P1D','kp',10,'kp','fix')
% constraining Kp to lie between 3 and 4
m = pem(Data,'P2U','kp',{'max',4},'kp',{'min',3})
% For two inputs, estimate the offset level
% of the first input
m = pem(Data,{'P2I','P1D'},'ulevel',{'est','zer'})
% estimate a noise model
m = pem(Data,'P2U','dist','est')
% Use a fixed noisemodel,
% given by the continuous-time idpoly model noimod
m = pem(Data,'P2U','dist',{'fix',noimod})
% (minimum Kp for the second input)
m.kp.min(2) = 12
% fixing the gain for the second input.
m.kp.status{2} = 'fix'

```

For a complete list of property values, use get (m). To see possible value assignments, use set(m).

\section*{idproc Definition of States}

\section*{Examples}

The states of an idproc model are defined as those corresponding to the model obtained by converting them to the state-space format using the idss command. For example, if you have an idproc model defined by m1 = idproc('P1D'); , then the initial states of this model correspond to those of \(\mathrm{m} 2=\) idss \((\mathrm{m} 1)\). The concept of states is useful for functions such as sim, predict, compare and findstates.

In this example, you estimate a process model with two real poles and dead time, including an ARMA1 model to capture disturbance dynamics:
```

m = pem(Data,'P2D','dist','arma1')

```
\begin{tabular}{|c|c|}
\hline Purpose & Resample time-domain data by decimation or interpolation \\
\hline Syntax & ```
datar = idresamp(data,R)
datar = idresamp(data,R,order,tol)
[datar,res_fact] = idresamp(data,R,order,tol)
``` \\
\hline Description & \begin{tabular}{l}
datar = idresamp(data,R) resamples data on a new sample interval \(R\) and stores the resampled data as datar. \\
datar = idresamp(data, R,order, tol) filters the data by applying a filter of specified order before interpolation and decimation. Replaces R by a rational approximation that is accurate to a tolerance tol. \\
[datar,res_fact] = idresamp(data,R,order,tol) returns res_fact, which corresponds to the value of \(R\) approximated by a rational expression.
\end{tabular} \\
\hline Input & \begin{tabular}{l}
data \\
Name of time-domain iddata object or a matrix of data. Can be input-output or time-series data. \\
Data must be sampled at equal time intervals.
\end{tabular} \\
\hline & \begin{tabular}{l}
R \\
Resampling factor, such that \(\mathrm{R}>1\) results in decimation and \(\mathrm{R}<1\) results in interpolation.
\end{tabular} \\
\hline & Any positive number you specify is replaced by the rational approximation, Q/P. \\
\hline & order Order of the filters applied before interpolation and decimation. \\
\hline & Default: 8 \\
\hline & \begin{tabular}{l}
tol \\
Tolerance of the rational approximation for the resampling factor \\
R.
\end{tabular} \\
\hline
\end{tabular}

\section*{idresamp}

Smaller tolerance might result in larger \(P\) and \(Q\) values, which produces more accurate answers at the expense of slower computation.

Default: 0.1

\section*{Output}
datar
Name of the resampled data variable. datar class matches the data class, as specified.
res_fact
Rational approximation for the specified resampling factor R and tolerance tol.

Any positive number you specify is replaced by the rational approximation, \(Q / P\), where the data is interpolated by a factor \(P\) and then decimated by a factor \(Q\).

\section*{See Also}
resample

\section*{Purpose \\ Syntax \\ Description}

State-space model
```

$m=i d s s(A, B, C, D)$
$m=1 d s s(A, B, C, D, K, x 0, T s, ' P r o p e r t y 1 ', V a l u e 1, \ldots$
'PropertyN',ValueN)
mss $=$ idss(m1)

```

The function idss is used to construct state-space model structures
with various parameterizations. It is a complement to idgrey and deals with parameterizations that do not require the user to write a special function. Instead it covers parameterizations that are either 'Free', that is, all parameters in the A, B, and C matrices can be adjusted freely, or 'Canonical', meaning that the matrices are parameterized as canonical forms. The parameterization can also be 'Structured', which means that certain elements in the state-space matrices are free to be adjusted, while others are fixed. This is explained below.

Ts is the sampling interval. Ts \(=0\) means a continuous-time model. The default is Ts = 1 .

The idss object m describes state-space models in innovations form of the following kind:
\[
\begin{aligned}
\tilde{x}(t) & =A(\theta) x(t)+B(\theta) u(t)+K(\theta) e(t) \\
x(0) & =x_{0}(\theta) \\
y(t) & =C(\theta) x(t)+D(\theta) u(t)+e(t)
\end{aligned}
\]

Here \(\tilde{x}(t)\) is the time derivative \(\dot{x}(t)\) for a continuous-time model and \(x(t+T s)\) for a discrete-time model.

The model m will contain information both about the nominal/initial values of the \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{K}\), and X0 matrices and about how these matrices are parameterized by the parameter vector \(\theta\) (to be estimated).

The nominal model is defined by idss ( \(A, B, C, D, K, X 0\) ). If \(K\) and \(X 0\) are omitted, they are taken as zero matrices of appropriate dimensions.

Defining an idss object from a given model,
```

mss = idss(m1)

```
constructs an idss model from any idmodel or LTI system m1.
If m 1 is an LTI system ( \(\mathrm{ss}, \mathrm{tf}\), or zpk) that has no InputGroup called 'Noise ', the corresponding state-space matrices \(A, B, C, D\) are used to define the idss object. The Kalman gain \(K\) is then set to zero.

If the LTI system has an InputGroup called 'Noise', these inputs are interpreted as white noise with a covariance matrix equal to the identity matrix. The corresponding Kalman gain and noise variance are then computed and entered into the idss model together with \(A, B, C\), and \(D\).

\section*{Parameterizations}

There are several different ways to define the parameterization of the state-space matrices. The parameterization determines which parameters can be adjusted to data by the parameter estimation routine pem.
- Free black-box parameterizations: This is the default situation and corresponds to letting all parameters in \(A, B\), and \(C\) be freely adjustable. You do this by setting the property 'SSParameterization' = 'Free'. The parameterizations of \(D, K\), and \(X 0\) are then determined by the following properties:
- 'nk': A row vector of the same length as the number of inputs. The kuth element is the delay from input channel number ku. Thus nk \(=[0, \ldots, 0]\) means that there is no delay from any of the inputs, and that consequently all elements of the \(D\) matrix should be estimated. \(n k=[1, \ldots, 1]\) means that there is a delay of 1 from each input, so that the \(D\) matrix is fixed to be zero.
- 'DisturbanceModel': This property affects the parameterization of K and can assume the following values:
'Estimate ': All elements of the \(K\) matrix are to be estimated.
'None' : All elements of \(K\) are fixed to zero.
'Fixed ': All elements of \(K\) are fixed to their nominal/initial values.
- 'InitialState': Affects the parameterization of \(X 0\) and can assume the following values:
'Auto ': An automatic choice of the following is made, depending on data (default).
'Estimate ': All elements of \(X 0\) are to be estimated.
'Zero': All elements of \(X 0\) are fixed to zero.
'Fixed ': All elements of \(X 0\) are fixed to their nominal/initial values.
'Backcast': The vector \(X 0\) is adjusted, during the parameter estimation step, to a suitable value, but it is not stored as an estimation result.
- Canonical black-box parameterizations: You do this by setting the property 'SSParameterization' = 'Canonical'. The matrices \(A\), \(B\), and \(C\) are then parameterized as an observer canonical form, which means that ny (number of output channels) rows of \(A\) are fully parameterized while the others contain 0's and 1's in a certain pattern. The \(C\) matrix is built up of 0's and 1's while the \(B\) matrix is fully parameterized. See Equation (A.16) in Ljung (1999) for details. The exact form of the parameterization is affected by the property 'CanonicalIndices'. The default value 'Auto' is a good choice. The parameterization of the \(D, K\), and \(X 0\) matrices in this case is determined by the properties 'nk', 'DisturbanceModel', and 'InitialState'.
- Arbitrarily structured parameterizations: The general case, where arbitrary elements of the state-space matrices are fixed and others can be freely adjusted, corresponds to the case 'SSParameterization' = 'Structured'. The parameterization is determined by the idss properties As, Bs, Cs, Ds, Ks, and XOs. These are the structure matrices that are "shadows" of the state-space matrices, so that an element in these matrices that is equal to NaN indicates a freely adjustable parameter, while a numerical value in these matrices indicates that the corresponding system matrix element is fixed (nonadjustable) to this value.
- SSParameterization has the following possible values:
- 'Free': Means that all parameters in \(A, B\), and \(C\) are freely adjustable, and the parameterizations of \(D, K\), and \(X 0\) depend on the properties 'nk', 'DisturbanceModel', and 'InitialState'.
- 'Canonical': Means that \(A\) and \(C\) are parameterized as an observer canonical form. The details of this parameterization depend on the property 'CanonicalIndices'. The \(B\) matrix is always fully parameterized, and the parameterizations of \(D, K\), and \(X 0\) depend on the properties 'nk', 'DisturbanceModel', and 'InitialState'.
- 'Structured': Means that the parameterization is determined by the properties (the structure matrices) 'As', 'Bs', 'Cs', 'Ds', 'Ks', and ' XOs '. A NaN in any position in these matrices denotes a freely adjustable parameter, and a numeric value denotes a fixed and nonadjustable parameter.
- nk: A row vector with as many entries as the number of input channels. The entry number k denotes the time delay from input number \(k\) to \(y(t)\). This property is relevant only for 'Free' and 'Canonical ' parameterizations. If any delay is larger than 1 , the structure of the \(A, B\), and \(C\) matrices will accommodate this delay, at the price of a higher-order model.
- DisturbanceModel has the following possible values:
- 'Estimate ': Means that the \(K\) matrix is fully parameterized.
- 'None ': Means that the \(K\) matrix is fixed to zero. This gives a so-called output-error model, since the model output depends on past inputs only.
- 'Fixed ': Means that the \(K\) matrix is fixed to the current nominal values.
- InitialState has the following possible values:
- 'Estimate ': Means that X0 is fully parameterized.
- 'Zero': Means that X0 is fixed to zero.
- 'Fixed ': Means that \(X 0\) is fixed to the current nominal value.
- 'Backcast': The value of \(X 0\) is estimated by the identification routines as the best fit to data, but it is not stored.
- 'Auto': Gives an automatic and data-dependent choice among 'Estimate', 'Zero', and 'Backcast'.
- A, B, C, D, K, and XO: The state-space matrices that can be set and retrieved at any time. These contain both fixed values and estimated/nominal values.
- \(d A, d B, d C, d D, d K\), and \(d X 0\) : The estimated standard deviations of the state-space matrices. These cannot be set, only retrieved. Note that these are not defined for an idss model with 'Free' SSParameterization. You can then convert the parameterization to 'Canonical' and study the uncertainties of the matrix elements in that form.
- As, Bs, Cs, Ds, Ks, and X0s: These are the structure matrices that have the same sizes as A, B, C, etc., and show the freely adjustable parameters as NaNs in the corresponding position. These properties are used to define the model structure for 'SSParameterization' \(=\) 'Structured'. They are always defined, however, and can be studied also for the other parameterizations.
- CanonicalIndices: Determines the details of the canonical parameterization. It is a row vector of integers with as many entries as there are outputs. They sum up to the system order. This is the so-called pseudocanonical multiindex with an exact definition, for example, on page 132 in Ljung (1999). A good default choice is 'Auto'. This property is relevant only for the canonical parameterization case. Note however, that for 'Free' parameterizations, the estimation algorithms also store a canonically parameterized model to handle the model uncertainty.

In addition to these properties, idss objects also have all the properties of the idmodel object. See idmodel properties, Algorithm Properties, and EstimationInfo.

Note that all properties can be set and retrieved either by the set and get commands or by subscripts. Autofill applies to all properties and values, and these are case insensitive.
```

m.ss='can'
set(m,'ini','z')
p = eig(m.a)

```

For a complete list of property values, use get (m). To see possible value assignments, use set(m).

\section*{Examples}

Define a continuous-time model structure corresponding to
\[
\begin{aligned}
\dot{x} & =\left[\begin{array}{ll}
\theta_{1} & 0 \\
0 & \theta_{2}
\end{array}\right] x+\left[\begin{array}{l}
\theta_{3} \\
\theta_{4}
\end{array}\right] u \\
y & =\left[\begin{array}{ll}
1 & 1
\end{array}\right] x+e
\end{aligned}
\]
with initial values
\[
\theta=\left[\begin{array}{c}
-0.2 \\
-0.3 \\
2 \\
4
\end{array}\right]
\]
and estimate the free parameters.
```

A = [-0.2, 0; 0, -0.3]; B = [2;4]; C=[1, 1]; D = 0
m0 = idss(A,B,C,D);
m0.As = [NaN,0;O,NaN];
mO.Bs = [NaN;NaN];
m0.Cs = [1,1];
m0.Ts = 0;
m = pem(z,m0);

```

Estimate a model in free parameterization. Convert it to continuous time, then convert it to canonical form and continue to fit this model to data.
```

m1 = n4sid(data,3);
m1 = d2c(m1);
m1.ss ='can';
m = pem(data,m1);

```

All of this can be done at once by
```

m = pem(data,3,'ss','can','ts',0)

```

See Also
n4sid | pem | setstruc
How To . "Using Linear Model for Hammerstein-Wiener Estimation"

Purpose Transform iddata objects from frequency to time domain

\section*{Syntax \\ dat \(=i f f t(D a t f)\)}

Description ifft transforms a frequency-domain iddata object to the time domain. It requires the frequencies on Datf to be equally spaced from frequency 0 to the Nyquist frequency. This means that if there are N frequencies in Datf and the time sampling interval is Ts, then

Datf.Frequency = [0:df:F], where \(F\) is \(\mathrm{pi} / T \mathrm{~s}\) if N is odd and \(F=p i / T s^{*}(1-1 / N)\) if \(N\) is even.

\section*{See Also}
iddata
fft

Purpose
Plot impulse response with confidence interval

\section*{Syntax}
```

impulse(m)
impulse(data)
impulse(m,'sd',sd,Time)
impulse(m,'sd',sd,Time,'fill')
impulse(data,'sd',sd,'pw',na,Time)
impulse(m1,m2,...,dat1, ...,mN,Time,'sd',sd)
impulse(m1,'PlotStyle1',m2,'PlotStyle2',...,dat1,'PlotStylek',...,
mN,'PlotStyleN',Time,'sd',sd)
[y,t,ysd] = impulse(m)
mod = impulse(data)

```

\section*{Description}
impulse can be applied both to idmodels and to iddata sets, as well as to any mixture.

For a discrete-time idmodel \(m\), the impulse response \(y\) and, when required, its estimated standard deviation ysd, are computed using sim. When called with output arguments, \(y\), \(y s d\), and the time vector \(t\) are returned. When impulse is called without output arguments, a plot of the impulse response is shown. If sd is given a value larger than zero, a confidence region around zero is drawn. It corresponds to the confidence of sd standard deviations. In the plots, the impulse is inversely scaled with the sampling interval so that it has the same energy regardless of the sampling interval.
Adding an argument 'fill' among the input arguments gives an uncertainty region marked by a filled area rather than by dash-dotted lines.

\section*{Setting the Time Interval}

You can specify the start time T1 and the end time T2 using Time= [T1 T2]. If T1 is not given, it is set to \(-\mathrm{T} 2 / 4\). The negative time lags (the impulse is always assumed to occur at time 0 ) show possible feedback effects in the data when the impulse is estimated directly from data. If Time is not specified, a default value is used.

\section*{Estimating the Impulse Response from Data}

For an iddata object, impulse(data) estimates a high-order, noncausal FIR model after first having prefiltered the data so that the input is "as white as possible." The impulse response of this FIR model and, when asked for, its confidence region, are then plotted. Note that it is not always possible to deliver the demanded time interval when the response is estimated. A warning is then issued. When called with an output argument, impulse, in the iddata case, returns this FIR model, stored as an idarx model. The order of the prewhitening filter can be specified by the property name/property value pair 'pw' / na. The default value is na \(=10\).

\section*{Several Models/Data Sets}

Any number and any mixture of models and data sets can be used as input arguments. The responses are plotted with each input/output channel (as defined by the model and data set InputName and OutputName properties) as a separate plot. Colors, line styles, and marks can be defined by PlotStyle values. These are the same as for the regular plot command, as in
```

impulse(m1,'b-*',m2,'y--',m3,'g')

```

\section*{Noise Channels}

The noise input channels in m are treated as follows:
Consider a model m with both measured input channels \(u\) ( \(n u\) channels) and noise channels \(e\) (ny channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that m. NoiseVariance \(=\Lambda\). The model can also be described with unit variance, using a normalized noise source \(v\) :
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]
- impulse (m) plots the impulse response of the transfer function \(G\).
- impulse (m('n')) plots the impulse response of the transfer function \(H\) ( \(n y\) inputs and \(n y\) outputs). The input channels have names e@yname, where yname is the name of the corresponding output.
- If m is a time series, that is \(n u=0\), impulse \((\mathrm{m})\), plots the impulse response of the transfer function \(H\).
- impulse (noisecnv (m)) plots the impulse response of the transfer function \([G H]\) ( \(n u+n y\) inputs and ny outputs). The noise input channels have names e@yname, where yname is the name of the corresponding output.
- impulse(noisecnv(m, 'norm')) plots the impulse response of the transfer function [GHL] (nu+ny inputs and ny outputs). The noise input channels have names v@yname, where yname is the name of the corresponding output.

\section*{Arguments}

Examples

If impulse is called with a single idmodel m, the output argument y is a 3-D array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector \(t\), ny is the number of output channels, and nu is the number of input channels. Thus \(\mathrm{y}(:, \mathrm{ky}, \mathrm{ku})\) is the response in output ky to an impulse in the kuth input channel.
ysd has the same dimensions as \(y\) and contains the standard deviations of \(y\).

If impulse is called with an output argument and a single data set in the input arguments, the output is returned as an idarx model mod containing the high-order FIR model and its uncertainty. By calling impulse with mod, the responses can be displayed and returned without your having to redo the estimation.

Suppose that you have a two-input and three-output data set. To estimate and plot the impulse response for all I/O pairs, including

\section*{impulse}
the confidence region corresponding to 3 standard deviations, use the following command:
impulse(data,'sd',3) \% Response from input 3 to output 2
To take a closer look at the subsystems, do the following:
```

mod = impulse(data)
impulse(mod(2,3),'sd',3)

```

\section*{See Also}
cra
step

\section*{Purpose Set or randomize initial parameter values}

Syntax \(\quad m=\operatorname{init}(m 0)\)
m = init(m0,R,pars,sp)

This function randomizes initial parameter estimates for model structures m0 for any idmodel, idnlarx, and idnlhw model object. It does not support idnlgrey models. \(m\) is the same model structure as \(m 0\), but with a different nominal parameter vector. This vector is used as the initial estimate by pem.

The parameters are randomized around pars with variances given by the row vector R. Parameter number \(k\) is randomized as pars (k) + e*sqrt ( \(R(k)\) ), where e is a normal random variable with zero mean and a variance of 1 . The default value of \(R\) is all ones, and the default value of pars is the nominal parameter vector in mo.
Only models that give stable predictors are accepted. If \(s p=\) ' \(b\) ', only models that are both stable and have stable predictors are accepted.
\(s p=\) 's' requires stability only of the model, and \(s p=\) ' \(p\) ' requires stability only of the predictor. \(s p=\) ' \(p\) ' is the default.

Sufficiently free parameterizations can be stabilized by direct means without any random search. To just stabilize such an initial model, set \(R=0\). With \(R>0\), randomization is also done.

For model structures where a random search is necessary to find a stable model/predictor, a maximum of 100 trials is made by init. It can be difficult to find a stable predictor for high-order systems by trial and error.

\section*{See Also}
```

idnlarx
idnlhw
idmodel
pem

```

Purpose Determine whether model parameters or data values are real

\author{
Syntax isreal(Data) isreal(Model) \\ Description \\ Data is an iddata set and Model is any idmodel. The isreal function returns 1 if all parameters of the model are real and if all signals of the data set are real.
}

See Also
realdata

\section*{Purpose}

Estimate AR model using instrumental variable method

Syntax

Description

\section*{Examples}

\section*{References}
```

m = ivar(y,na)
m = ivar(y,na, nc, maxsize)

```

Estimate AR model using the instrumental variable method and returning idpoly object. The parameters of an AR model structure
\[
A(q) y(t)=e(t)
\]
are estimated using the instrumental variable method. y is the signal to be modeled, entered as an iddata object (outputs only). na is the order of the \(A\) polynomial (the number of \(A\) parameters). The resulting estimate is returned as an idpoly model m . The routine is for scalar time-domain signals only.

In the above model, \(e(t)(t)\) is an arbitrary process, assumed to be a moving average process of order nc, possibly time varying. (Default is nc = na.) Instruments are chosen as appropriately filtered outputs, delayed nc steps.

The optional argument maxsize is explained under Algorithm Properties.

Compare spectra for sinusoids in noise, estimated by the IV method and by the forward-backward least squares method.
```

y = iddata(sin([1:500]'*1.2) + sin([1:500]'*1.5) + ...
0.2*randn(500,1),[]);
miv = ivar(y,4);
mls = ar(y,4);
bode(miv,mls)

```

Stoica, P., et al., Optimal Instrumental variable estimates of the \(A R\)-parameters of an ARMA process, IEEE Trans. Autom. Control, Vol. AC-30, 1985, pp. 1066-1074.
See Also \begin{tabular}{ll} 
Algorithm Properties \\
& EstimationInfo \\
& ar \\
& arx \\
& etfe \\
idpoly \\
pem \\
& spa \\
& step
\end{tabular}

\section*{Purpose \\ Loss functions for sets of ARX model structures}

Syntax
v = ivstruc(ze,zv,NN)
v = ivstruc(ze,zv,NN,p,maxsize)

NN is a matrix that defines a number of different structures of the ARX type. Each row of NN is of the form
```

nn = [na nb nk]

```
with the same interpretation as described for arx. See struc for easy generation of typical NN matrices.
ze and zv are iddata objects containing output-input data. Only time-domain data is supported. Models for each model structure defined in NN are estimated using the instrumental variable (IV) method on data set ze. The estimated models are simulated using the inputs from data set zv. The normalized quadratic fit between the simulated output and the measured output in zv is formed and returned in v . The rows below the first row in \(v\) are the transpose of \(N N\), and the last row contains the logarithms of the condition numbers of the IV matrix
\[
\sum \varsigma(t) \varphi^{T}(t)
\]

A large condition number indicates that the structure is of unnecessarily high order (see Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999, p. 498).

The information in \(v\) is best analyzed using selstruc.
If \(p\) is equal to zero, the computation of condition numbers is suppressed. For the use of maxsize, see Algorithm Properties.

The routine is for single-output systems only.

Note The IV method used does not guarantee that the models obtained are stable. The output-error fit calculated in v can then be misleading.

\section*{Examples Compare the effect of different orders and delays, using the same data set for both the estimation and validation.}
```

v = ivstruc(z,z,struc(1:3,1:2,2:4));
nn = selstruc(v)
m = iv4(z,nn);

```

Algorithm

References
Ljung, L. System Identification: Theory for the User, Upper Saddle River, NJ, Prentice-Hal PTR, 1999.

\section*{See Also}

A maximum-order ARX model is computed using the least squares method. Instruments are generated by filtering the input(s) through this model. The models are subsequently obtained by operating on submatrices in the corresponding large IV matrix.
arxstruc
iv4
selstruc
struc

\section*{Purpose Estimate parameters of ARX model using instrumental variable method} with arbitrary instruments
```

Syntax
m = ivx(data,orders,x)
m = ivx(data,orders,x,maxsize)

```

\section*{Description}

References Ljung (1999), page 222.

See Also
Algorithm Properties
EstimationInfo
arx
idarx
idpoly

\section*{Purpose}

Estimate ARX model using four-stage instrumental variable method

\section*{Syntax}
\(m=i v 4(d a t a, o r d e r s)\)
\(m=1 v 4(d a t a, ' n a ', n a, ' n b ', n b, ' n k ', n k)\)
m= iv4(data,orders,'Property1', Value1,...,'PropertyN',ValueN)

\section*{Description}

\section*{Examples}

\section*{Algorithm}

\section*{See Also}

References Ljung (1999), equations (15.21) through (15.26).
Returns idpoly or idarx object. This function is an alternative to arx and the use of the arguments is entirely analogous to the arx function. The main difference is that the procedure is not sensitive to the color of the noise term \(e(t)\) in the model equation.

Here is an example of a two-input, one-output system with different delays on the inputs \(u_{1}\) and \(u_{2}\).
```

z = iddata(y, [u1 u2]);
nb = [2 2];
nk = [0 2];
m= iv4(z,[2 nb nk]);

```

The first stage uses the arx function. The resulting model generates the instruments for a second-stage IV estimate. The residuals obtained from this model are modeled as a high-order AR model. At the fourth stage, the input-output data is filtered through this AR model and then subjected to the IV function with the same instrument filters as in the second stage.

For the multiple-output case, optimal instruments are obtained only if the noise sources at the different outputs have the same color. The estimates obtained with the routine are reasonably accurate, however, even in other cases.

Algorithm Properties
EstimationInfo
idpoly
ivx
pem
\begin{tabular}{|c|c|}
\hline Purpose & Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input \\
\hline Syntax & \[
\begin{aligned}
& l m=\operatorname{linapp}(\text { nlmodel }, \mathrm{u}) \\
& \mathrm{lm}=\text { linapp }(\text { nlmodel }, \text { umin, umax }, \text { nsample })
\end{aligned}
\] \\
\hline \multirow[t]{4}{*}{Input} & \begin{tabular}{l}
nlmodel \\
Name of the idnlarx or idnlhw model object you want to linearize.
\end{tabular} \\
\hline & u Input signal as an iddata object or a real matrix. \\
\hline & \begin{tabular}{l}
Dimensions of \(u\) must match the number of inputs in nlmodel. \\
[umin, umax] \\
Minimum and maximum input values for generating white-noise input with a magnitude in this rectangular range. The sample length of this signal is nsample.
\end{tabular} \\
\hline & \begin{tabular}{l}
nsample \\
Optional argument when you specify [umin, umax]. Specifies the length of the white-noise input. Default: 1024.
\end{tabular} \\
\hline \multirow[t]{3}{*}{Description} & lm = linapp( \(\mathrm{nlmodel}, \mathrm{u}\) ) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input signal \(u\), and estimating a linear model 1 m from \(u\) and the simulated output signal. \\
\hline & lm = linapp(nlmodel, umin, umax, nsample) computes a linear approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the input signal as a uniformly distributed white noise from the magnitude range umin and umax and (optionally) the number of samples. \\
\hline & The following table summarizes the linear model objects that store the linear approximation for each type of nonlinear model and the number of outputs. \\
\hline
\end{tabular}

\section*{linapp}
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Nonlinear Model \\
Type
\end{tabular} & Number of Outputs & \begin{tabular}{l} 
Linear Model \\
Object
\end{tabular} \\
\hline idnlarx & Single output & idpoly \\
\hline idnlarx & Multiple outputs & idarx \\
\hline idnlhw & Single output & idpoly \\
\hline idnlhw & Multiple outputs & idss \\
\hline
\end{tabular}

\author{
See Also idnlarx | idnlhw | findop(idnlarx) | findop(idnlhw) | linearize(idnlarx) | linearize(idnlhw)
}

How To . "Linear Approximation of Nonlinear Black-Box Models"

\section*{Purpose}

\section*{Syntax}

Description

\section*{Remarks}
linear
Properties

Specify to estimate nonlinear ARX model that is linear in (nonlinear) custom regressors
```

lin=linear
lin=linear('Parameters',Par)

```
linear is an object that specifies that the nonlinear ARX model is linear in custom (nonlinear) regressors. You define custom regressors using customreg.
lin=linear instantantiates the linear object.
lin=linear('Parameters', Par) instantantiates the linear object and specifies optional values in the Par structure. For more information about this structure, see "linear Properties" on page 2-267.
linear is a linear (affine) function \(y=F(x)\), defined as follows:
\[
F(x)=x L+d
\]
\(y\) is scalar, and \(x\) is a \(1-b y-\mathrm{m}\) vector.
Use evaluate (lin, \(x\) ) to compute the value of the function defined by the linear object lin at \(x\).

You can include property-value pairs in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List Parameters values
get(lin)
% Get value of Parameters property
lin.Parameters

```

\section*{linear}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Parameters & Structure containing the following fields: \\
& - LinearCoef: m-by-1 vector \(L\). \\
& - OutputOffset: Scalar d. \\
\hline
\end{tabular}

\section*{Examples}

To specify that the nonlinear ARX model is linear in custom regressors, first specify one or more customreg objects. Then, include the linear object in the nlarx estimator command.

For example, to estimate a nonlinear ARX model linear in the custom regressors, use the following syntax:
```

m=nlarx(Data,Orders,linear,'custom',{'y(t-1)*u(t-2)'});

```

Note In this example, the custom regressor is a nonlinear function of input and output variables.

Algorithm

When the idnlarx property Focus is 'Prediction', linear uses a fast, noniterative initialization and iterative search technique for estimating parameters. In most cases, iterative search requires only a few iterations.

When the idnlarx property Focus='Simulation', linear uses an iterative technique for estimating parameters.

\section*{See Also}
```

customreg
nlarx

```

\section*{linearize(idnlarx)}
\begin{tabular}{ll} 
Purpose & Linearize nonlinear ARX model \\
Syntax & SYS = linearize (NLSYS, UO , XO)
\end{tabular}

Description

Input

SYS = linearize(NLSYS, UO, XO) linearizes a nonlinear ARX model about the specified operating point UO and XO. The linearization is based on tangent linearization. For more information about the definition of states for idnlarx models, see "Definition of idnlarx States" on page 2-189.
- NLSYS: idnlarx model.
- UO: Matrix containing the constant input values for the model.
- XO: Model state values. The states of a nonlinear ARX model are defined by the time-delayed samples of input and output variables. For more information about the states of nonlinear ARX models, see the getDelayInfo reference page.

Note To estimate U0 and X0 from operating point specifications, use the findop(idnlarx) command.

\section*{Output}
- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

\section*{Algorithm}

The following equations govern the dynamics of an idnlarx model:
\[
\begin{aligned}
& X(t+1)=A X(t)+B \tilde{u}(t) \\
& y(t)=f(X, u)
\end{aligned}
\]
where \(X(t)\) is a state vector, \(u(t)\) is the input, and \(y(t)\) is the output. \(A\) and \(B\) are constant matrices. \(\tilde{u}(t)\) is \([y(t), u(t)]^{T}\).

The output at the operating point is given by

\section*{linearize(idnlarx)}
\(y^{*}=f\left(X^{*}, u^{*}\right)\)
where \(X^{*}\) and \(u^{*}\) are the state vector and input at the operating point. The linear approximation of the model response is as follows:
\[
\begin{aligned}
& \Delta X(t+1)=\left(A+B_{1} f_{X}\right) \Delta X(t)+\left(B_{1} f_{u}+B_{2}\right) \Delta u(t) \\
& \Delta y(t)=f_{X} \Delta X(t)+f_{u} \Delta u(t)
\end{aligned}
\]
where
- \(\Delta X(t)=X(t)-X^{*}(t)\)
- \(\Delta u(t)=u(t)-u^{*}(t)\)
- \(\Delta y(t)=y(t)-y^{*}(t)\)
- \(B \tilde{U}=\left[B_{1}, B_{2}\right]\left[\begin{array}{l}Y \\ U\end{array}\right]=B_{1} Y+B_{2} U\)
- \(f_{X}=\left.\frac{\partial}{\partial X} f(X, U)\right|_{X^{*}, U^{*}}\)
- \(f_{U}=\left.\frac{\partial}{\partial U} f(X, U)\right|_{X^{*}, U^{*}}\)

Note For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

Example
Linearize a nonlinear ARX model around an operating point corresponding to a simulation snapshot at a specific time. Create an idnlarx model estimated using sample data.

1 Load sample data:

\section*{load iddata2}

2 Estimate idnlarx model from sample data:
```

nlsys = nlarx(z2,[4 3 10],'tree','custom',...
{'sin(y1(t-2)*u1(t))+y1(t-2)*u1(t)+u1(t).*u1(t-13)',...
'y1(t-5)*y1(t-5)*y1(t-1)'},'nlr',[1:5, 7 9]);

```

3 Plot the response of the model for a step input:
```

step(nlsys, 20)

```

From u1


The model step response is a steady-state value of 0.8383 at \(\mathrm{T}=\) 20 seconds.

4 Compute the operating point corresponding to \(\mathrm{T}=20\).
```

stepinput = iddata([],[zeros(10,1);ones(200,1)],...
nlsys.Ts);
% Compute operating point.
[x,u] = findop(nlsys,'snapshot',20,stepinput);

```

\section*{linearize(idnlarx)}

5 Linearize the model about the operating point corresponding to the model snapshot at \(\mathrm{T}=20\).
```

sys = linearize(nlsys,u,x)

```

6 To validate the linear model, apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the linear approximation is accurate, the following should match:
- The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and the perturbation delta_u.
- The sum of the response of the linear model to a perturbation input delta_u and the output equilibrium level.
```

% Generate a 200-sample step signal with amplitude 0.1
% This is the perturbation signal.
delta_u = [zeros(10,1); 0.1*ones(190,1)];
%
% For a nonlinear system with a steady-state input of 1
% and a steady-state output of 0.8383,
% compute the steady-state response
% y_nl to the perturbed input u_nl. Use equilibrium state
% values x as initial conditions (see Step 4).
u_nl = 1 + delta_u;
y_nl = sim(nlsys,u_nl,x);
%
% Compute response of linear model to perturbation input
% and add it to the output equilibrium level:
y_lin = 0.8383 + lsim(sys,delta_u);
%
% Compare the response of nonlinear and linear models:
time = [0:0.1:19.9]';
plot(time,y_nl,time,y_lin)
legend('Nonlinear response',...
'Linear response about op. pt.')

```

\section*{linearize(idnlarx)}
```

title(['Nonlinear and linear model response'...
' for small step input'])

```


The linearized model response tracks the nonlinear model output.
See Also
findop(idnlarx) | getDelayInfo | idnlarx | linapp
How To . "Linear Approximation of Nonlinear Black-Box Models"

\section*{linearize(idnlhw)}

\section*{Purpose Linearize Hammerstein-Wiener model}

Syntax \(\quad\) SYS = linearize(NLSYS, UO)
SYS = linearize(NLSYS,UO,XO)
SYS = linearize(NLSYS, UO) linearizes a Hammerstein-Wiener model around the equilibrium operating point. When using this syntax, equilibrium state values for the linearization are calculated automatically using UO.

SYS = linearize(NLSYS, UO,XO) linearizes the idnlhw model NLSYS around the operating point specified by the input UO and state values XO. In this usage, X0 need not contain equilibrium state values. For more information about the definition of states for idnlhw models, see "idnlhw States" on page 2-223.

The output is a linear model that is the best linear approximation for inputs that vary in a small neighborhood of a constant input \(u(t)=U\). The linearization is based on tangent linearization.
- NLSYS: idnlhw model.
- UO: Matrix containing the constant input values for the model.
- XO: Operating point state values for the model.

Note To estimate UO and XO from operating point specifications, use the findop(idnlhw) command.

\section*{Output}

Algorithm
- SYS is an idss model.

When the Control System Toolbox product is installed, SYS is an LTI object.

The idnlhw model structure represents a nonlinear system using a linear system connected in series with one or two static nonlinear
systems. For example, you can use a static nonlinearity to simulate saturation or dead-zone behavior. The following figure shows the nonlinear system as a linear system that is modified by static input and output nonlinearities, where function \(f\) represents the input nonlinearity, \(\boldsymbol{g}\) represents the output nonlinearity, and \([A, B, C, D]\) represents a state-space parameterization of the linear model.


The following equations govern the dynamics of an idnlhw model:
\(v(t)=f(u(t))\)
\(X(t+1)=A X(t)+B v(t)\)
\(w(t)=C X(t)+D v(t)\)
\(y(t)=g(w(t))\)
where
- \(u\) is the input signal
- \(v\) and \(w\) are intermediate signals (outputs of the input nonlinearity and linear model respectively)
- \(y\) is the model output

The linear approximation of the Hammerstein-Weiner model around an operating point ( \(X^{*}, u^{*}\) ) is as follows:
\[
\begin{aligned}
& \Delta X(t+1)=A \Delta X(t)+B f_{u} \Delta u(t) \\
& \Delta y(t) \approx g_{w} C \Delta X(t)+g_{w} D f_{u} \Delta u(t)
\end{aligned}
\]
where
- \(\Delta X(t)=X(t)-X^{*}(t)\)
- \(\Delta u(t)=u(t)-u^{*}(t)\)

\section*{linearize(idnlhw)}
- \(\Delta y(t)=y(t)-y^{*}(t)\)
- \(f_{u}=\left.\frac{\partial}{\partial u} f(u)\right|_{u=u^{*}}\)
- \(g_{w}=\left.\frac{\partial}{\partial w} g(w)\right|_{w=w^{*}}\)
where \(y^{*}\) is the output of the model corresponding to input \(u^{*}\) and state vector \(X^{*}, v^{*}=f\left(u^{*}\right)\), and \(w^{*}\) is the response of the linear model for input \(v^{*}\) and state \(X^{*}\).

Note For linear approximations over larger input ranges, use linapp. For more information, see the linapp reference page.

\section*{Examples}

Linearize a Hammerstein-Wiener model with two inputs at an equilibrium point, and compare the linearized model response to the original model response.

1 Load the sample data to create iddata object z.
```

load iddata2
load iddata3
z2.Ts = z3.Ts;
z = [z2(1:300),z3]; % Estimation data

```

2 Estimate an idnlhw model using a combination of pwlinear, poly1d, sigmoidnet and customnet nonlinearities.
```

orders = [2 2 3 4 1 5; 2 5 1 2 5 2];
nlsys = nlhw(z,orders,[pwlinear;poly1d],...
[sigmoidnet;customnet(@gaussunit)]);

```

3 Linearize the model at an equilibrium operating point corresponding to input levels of 10 and 5 respectively. To do this you first compute
the operating point using findop, then linearize the model around the computed input and state values.
```

[x,u_s,report] = findop(nlsys,'steady',[10,5]);
sys = linearize(nlsys,u_s,x);
% sys is a state-space model

```

4 To validate the linear model, apply a small perturbation delta_u to the steady-state input of the nonlinear model nlsys. If the linear approximation is accurate, the following should match:
- The response of the nonlinear model y_nl to an input that is the sum of the equilibrium level and the perturbation delta_u.
- The sum of the response of the linear model to a perturbation input delta_u and the output equilibrium level.
```

% Generate a 300-sample step signal with amplitude 0.1
% This is the perturbation input signal.
delta_u = [zeros(20,2); 0.1*ones(280,2)];
%
% Compute the response of the linear model delta_y_lin
% to the perturbed input signal delta_u:
delta_y_lin = lsim(sys,delta_u);
%
% For the nonlinear system with a steady-state input u_s,
% compute the steady-state output y_s from the
% SignalLevels field of the findop report (see Step 3):
y_s = report.SignalLevels.Output;
%
% Compute the perturbed input to the nonlinear system
% as the sum of the steady-state input u_s and
% the perturbation signal delta_u:
u_nl = bsxfun(@plus,delta_u,u_s);
% Compute the steady-state response of the
% nonlinear system y_nl to the perturbed input u_nl.
% Use equilibrium state values }\textrm{x}\mathrm{ as initial conditions.

```

\section*{linearize(idnlhw)}
```

y_nl = sim(nlsys,u_nl,x);
%
% Compare the response of nonlinear and linear models:
time = (0:299)';
subplot(211)
plot(time,y_nl(:,1),time,delta_y_lin(:,1)+y_s(1),'.')
legend('Nonlinear response',...
'Linear response about op. pt.')
title('Comparison of signal values for output 1')
subplot(212)
plot(time,y_nl(:,2),time,delta_y_lin(:,2)+y_s(2),'.')
legend('Nonlinear response',...
'Linear response about op. pt.')
title('Comparison of signal values for output 2')

```


\author{
See Also findop(idnlhw) | idnlhw | linapp \\ How To . "Linear Approximation of Nonlinear Black-Box Models"
}

\section*{LTI Commands}

Purpose
Apply Control System Toolbox commands to linear model
Syntax append, augstate, balreal, canon, d2d, feedback, inv, minreal, modred, norm, parallel, series, ss2ss

Description
When you have the Control System Toolbox product installed, you can apply the listed LTI commands to idmodel objects, including idarx, idgrey, idpoly, and idss models. You can also use the overloaded operations,+- , and *. The same operations are performed and the result is delivered as an idmodel. The original covariance information is lost most of the time, however.

Examples You have two more or less identical processes connected in series. Estimate a model for one of them, and use that to form an initial estimate for a model of the connected process.
```

% data concerns one of the processes
m = pem(data)
% data2 is from the entire connected process
m2 = pem(data2,m*m)

```

\section*{Purpose}

Syntax
Description

Merge data sets into iddata object
dat = merge(dat1,dat2,...., datN)
dat collects the data sets in dat1, ..., datN into one iddata object, with several experiments. The number of experiments in dat will be the sum of the number of experiments in datk. For the merging to be allowed, a number of conditions must be satisfied:
- All of datk must have the same number of input channels, and the InputNames must be the same.
- All of datk must have the same number of output channels, and the OutputNames must be the same. If some input or output channel is lacking in one experiment, it can be replaced by a vector of NaNs to conform with these rules.
- If the ExperimentNames of datk have been specified as something other than the default 'Exp1', 'Exp2', etc., they must all be unique. If default names overlap, they are modified so that dat will have a list of unique ExperimentNames.

The sampling intervals, the number of observations, and the input properties (Period, InterSample) might be different in the different experiments.

You can retrieve the individual experiments by using the command getexp. You can also retrieve them by subreferencing with a fourth index.
```

dat1 = dat(:,:,:,,ExperimentNumber)

```
or
```

dat1 = dat(:,:,:,,ExperimentName)

```

Storing multiple experiments as one iddata object can be very useful for handling experimental data that has been collected on different
occasions, or when a data set has been split up to remove "bad" portions of the data. All the toolbox routines accept multiple-experiment data.

\section*{Examples}

Bad portions of data have been detected around sample 500 and between samples 720 to 730 . Cut out these bad portions and form a multiple-experiment data set that can be used to estimate models without the bad data destroying the estimate.
```

dat = merge(dat(1:498),dat(502:719),dat(731:1000))
m = pem(dat)

```

Use the first two parts to estimate the model and the third one for validation.
```

m = pem(getexp(dat,[1,2]));
compare(getexp(dat,3),m)

```

See also iddemo \#9.

See Also \(\quad \begin{aligned} & \text { iddata } \\ & \text { getexp }\end{aligned}\)

\section*{Purpose Merge estimated models}

\section*{Syntax \\ \(m=\operatorname{merge}(m 1, m 2, \ldots, m N)\)
\([m, t v]=\operatorname{merge}(m 1, m 2)\)}

Description
The models \(\mathrm{m} 1, \mathrm{~m} 2, \ldots, \mathrm{mN}\) must all be of the same structure, just differing in parameter values and covariance matrices. Then \(m\) is the merged model, where the parameter vector is a statistically weighted mean (using the covariance matrices to determine the weights) of the parameters of mk.

When two models are merged,
```

[m, tv] = merge(m1,m2)

```
returns a test variable tv. It is \(x^{2}\) distributed with n degrees of freedom, if the parameters of m 1 and m 2 have the same means. Here n is the length of the parameter vector. A large value of tv thus indicates that it might be questionable to merge the models.

For idfrd models, merge is a statistical average of two responses in the individual models, weighted using inverse variances. You can only merge two idfrd models with responses at the same frequencies and nonzero covariances.

Merging models is an alternative to merging data sets and estimating a model for the merged data.
```

m1 = arx(z1,[2 3 4]);
m2 = arx(z2,[2 3 4]);
ma = merge(m1,m2);

```
and
```

mb = arx(merge(z1,z2),[2 3 4]);

```
result in models ma and mb that are related and should be close. The difference is that merging the data sets assumes that the signal-to-noise ratios are about the same in the two experiments. Merging the models
allows one model to be much more uncertain, for example, due to more disturbances in that experiment. If the conditions are about the same, we recommend that you merge data rather than models, since this is more efficient and typically involves better conditioned calculations.

\section*{Purpose}

Set folder for storing idprefs.mat containing GUI startup information
midprefs midprefs(path)

The graphical user interface ident allows a large number of variables for customized choices. These include the window layout, the default choices of plot options, and names and directories of the four most recent sessions with ident. This information is stored in the file idprefs.mat, which should be placed on the user's MATLABPATH. The default, automatic location for this file is in the same folder as the user's startup.m file.
midprefs is used to select or change the folder where you store idprefs.mat. Either type midprefs and follow the instructions, or give the folder name as the argument. Include all folder delimiters, as in the PC case
```

 midprefs('c:\matlab\toolbox\local\')
 or in the UNIX }\mp@subsup{}{}{\circledR}\mathrm{ case
midprefs('/home/ljung/matlab/')

```

See Also
ident

\section*{misdata}

Purpose Reconstruct missing input and output data
```

Syntax Datae = misdata(Data)
Datae = misdata(Data,Model)
Datae = misdata(Data,Maxiter,Tol)

```

Description

Algorithm

Data is time-domain input-output data in the iddata object format. Missing data samples (both in inputs and in outputs) are entered as NaNs.

Datae is an iddata object where the missing data has been replaced by reasonable estimates.

Model is any idmodel (idarx, idgrey, idpoly, idss) used for the reconstruction of missing data.
If no suitable model is known, it is estimated in an iterative fashion using default order state-space models.

Maxiter is the maximum number of iterations carried out (the default is 10 ). The iterations are terminated when the difference between two consecutive data estimates differs by less than Tol\%. The default value of Tol is 1 .

For a given model, the missing data is estimated as parameters so as to minimize the output prediction errors obtained from the reconstructed data. See Section 14.2 in Ljung (1999). Treating missing outputs as parameters is not the best approach from a statistical point of view, but is a good approximation in many cases.

When no model is given, the algorithm alternates between estimating missing data and estimating models, based on the current reconstruction.

\section*{Purpose}

\section*{Syntax}

Description

\section*{Remarks}

Class representing neural network object created in Neural Network Toolbox product for estimating nonlinear ARX and Hammerstein-Wiener models
```

n=neuralnet(Network)

```
neuralnet is an object that stores the neural network nonlinearity estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
\(\mathrm{n}=\) neuralnet (Network) creates a neural network nonlinearity estimator based on the network object you created using the Neural Network Toolbox product.
The neural network must meet the following requirements:
- Neural network must be created using the Neural Network Toolbox newff or newcf command (feedforward networks used for function approximation).
- Neural network must represent a static mapping between the inputs and the output. It should not contain I/O delays or feedback.
- Neural network must have one output. If you want to use neural networks for multiple-output nonlinear ARX model, you must assign a separate neuralnet estimator for each output-that is, each estimator must represent a single-output network object.

Use evaluate \((\mathrm{n}, \mathrm{x})\) to compute the value of the function defined by the neuralnet object n at x .

Use neuralnet to define a nonlinear function \(y=F(x)\), where \(F\) is a multilayer feedforward neural network, as defined in the Neural Network Toolbox documentation.
\(y\) is a scalar and \(x\) is an m-dimensional row vector.

When you have installed the Neural Network Toolbox product, you can create a multilayer feedforward neural network using the Neural Network Toolbox function newff:
\[
f f=n e w f f\left(P, T,\left[n L \_1, n L \_2, \ldots, n L \_r\right],\left\{t f \_1, t f \_2, \ldots, t f \_r\right\}\right)
\]
where \(P\) is an \(m-b y-N\) matrix containing inputs \(x\), and \(T\) is a \(1-b y-N\) matrix containing output (target) values for one of the model outputs. You can also use the Neural Network Toolbox function newcf.

There are \(\mathrm{r}+1\) layers and nL _k neurons in the kth layer, except for the last layer. The last layer has one neuron assigned automatically, such that \(n L_{-}(r+1)=1\). The transfer function (or unit function) in the kth layer is tf_k.

If \(m\) is unknown at the time of creation of the network, use \(P=\) zeros \((0, N)\) with arbitrary \(N>0\). After this initialization, \(m\) is adjusted to the estimation data by nlarx or nlhw. Similarly, you can set \(T\) to any vector (number of rows=1).

\section*{neuralnet Properties}

You include the property as an argument in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List Network property value
get(n)
n.Network

```

You can also use the set function to set the value of particular properties. For example:
```

set(d, 'Network', net_obj)

```

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Network & \begin{tabular}{l} 
Neural network object. You must use the Neural Network \\
Toolbox newff or newcf command to create such an object.
\end{tabular} \\
\hline
\end{tabular}

The newff and newcf commands automatically create a network object configured for use with the System Identification Toolbox software. When you manually configure the network object (net), specify its properties as follows:
- net.numInputs=1

The single input can be a vector.
- net.numLayers

Must be a positive integer ( nL ).
- net.inputConnect=[1;zeros(nL-1,1)]

The first layer must be connected to the input.
- net.outputConnect=[zeros(1,nL-1) 1]

The last layer must be connected to the output.
- net.layerConnect

Must be an nL-by-nL logical matrix that satisfies the following conditions:
- Each layer, except the last one, must have its output connected to another layer all(any (net. layerConnect(:, 1:end-1), 1), 2) == true
- Each layer, except the first one, must have its input connected to another layer all(any(net.layerConnect(2:end,:),2),1) == true

Typical value is diag(true (1, nL-1), -1) and represents a series connection from the first layer to the last layer.
- net.trainFcn

Must be set to the MATLAB training function name (MATLAB file, MEX-file, built-in, or P-file).
all(any(net.layerConnect(2:end,:),2),1) == true
- net.inputs\{1\}.size

Must be set zero (undetermined) or a positive integer equal to the number of regressors.
- net.initFcn='initlay'

Indicates the use of layer initialization functions.
- net.gradientFcn='calcjx'
- net.performFen

Must be set to the MATLAB performance function name (MATLAB file, MEX-file, built-in, or P-file).
any(exist(net.performFcn)==[2 3 5 6]) \(==\) true
Typical value is 'mse'.
- net.trainParam

Must be a structure with fields:
epochs
goal
max_fail
mem_reduc
min_grad
mu
mu_dec
mu_inc
mu_max
show
showCommandLine
showWindow
time
- net.layers(k).initFcn for \(k=1\) : \(n L\)

Must be set to the MATLAB initialization function name (MATLAB file, MEX-file, built-in, or P-file).
```

 any(exist(net.layers{k}.initFcn)==[2 3 5 6]) == true
    ```

Typical value is 'initnw'.
- net.biasConnect=logical(net.biasConnect)

Must be a logical value.

Note The layer numbers, namely the values of \(k\) in net.layers \(\{k\}\), are labels referring to the different layers. The layers are not necessarily connected in the natural order indicated by \(k\). It means that, in principle, net. layers\{1\} is not necessarily the input layer, and net.layers \{end\} is not necessarily the output layer. However, topologically, there is no loss of generality to assume that net.layers\{1\} is the input layer and net.layers\{end\} is the output layer. The previous requirements make these assumptions to simplify how you can validate your network object.
\begin{tabular}{|c|c|}
\hline Algorithm & When the idnlarx property Focus is 'Prediction', neuralnet uses the train method of the network object in the Neural Network Toolbox software for estimating parameters. \\
\hline & You cannot use nerualnet when Focus is 'Simulation' because this nonlinearity estimator is not differentiable. Minimization of simulation error requires differentiable nonlinear functions. \\
\hline Examples & Use neuralnet to specify the neural network nonlinearity estimator in nonlinear ARX and Hammerstein-Wiener models. For example: \\
\hline & ```
% Create network object using Neural Network Toolbox
net_obj=newff(zeros(0,10),rand(1,10),[6 8 2],...
    {'logsig','logsig','purelin'})
% Estimate nonlinear ARX model using
``` \\
\hline
\end{tabular}
```

% net_obj as the neural network
m=nlarx(z1,[2,6,10],neuralnet(net_obj));

```

\section*{See Also}
nlarx
nlhw

\section*{Purpose}

Shift data sequences

\section*{Syntax}

Datas = nkshift(Data,nk)

Data contains input-output data in the iddata format.
nk is a row vector with the same length as the number of input channels in Data.
Datas is an iddata object where the input channels in Data have been shifted according to nk. A positive value of nk(ku) means that input channel number ku is delayed \(\mathrm{nk}(\mathrm{ku})\) samples.
nkshift supports both frequency- and time-domain data. For frequency-domain data it multiplies with \(e^{i n k \omega T}\) to obtain the same effect as shifting in the time domain. For continuous-time frequency-domain data (\(\mathrm{Ts}=0\)), nk should be interpreted as the shift in seconds.
nkshift lives in symbiosis with the InputDelay property of idmodel:
```

m1 = pem(dat,4,'InputDelay',nk)

```
is related to
```

m2 = pem(nkshift(dat,nk),4);

```
such that m 1 and m 2 are the same models, but m 1 stores the delay information and uses this information when computing the frequency response, for example. When using m 2 , the delay value must be accounted for separately when computing time and frequency responses.

Note the difference from the idss and idpoly property nk.
```

m3 = pem(dat,4,'nk',nk)

```
gives a model that itself explicitly contains a delay of nk samples. In contrast, m 1 contains a total delay of \(\mathrm{m} 1 . \mathrm{nk}+\mathrm{m} 1\). InputDelay \(=4\).

\section*{See Also \\ Algorithm Properties \\ idss}

\author{
Purpose \\ Syntax \\ \section*{Description}
}

Estimate nonlinear ARX model
```

m = nlarx(data,[na nb nk])
m = nlarx(data,[na nb nk],Nonlinearity)
m = nlarx(data,[na nb nk],'PropertyName',PropertyValue)
m = nlarx(data,LinModel)
m = nlarx(data,LinModel,Nonlinearity)
m = nlarx(data,LinModel,Nonlinearity,'PropertyName',
PropertyValue)

```
\(m\) = nlarx(data,[na nb nk]) creates and estimates a nonlinear ARX model using a default wavelet network as its nonlinearity estimator. data is an iddata object. \(n a, n b\), and \(n k\) are positive integers that specify the model orders and delays.
\(m=\) nlarx(data,[na nb nk],Nonlinearity) specifies a nonlinearity estimator Nonlinearity, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
 constructs and estimates the model using options specified as idnlarx property name and value pairs. Specify PropertyName inside single quotes.
\(m=n l a r x(d a t a, L i n M o d e l)\) creates and estimates a nonlinear ARX model using a linear model (in place of [na nb \(n k\)]), and a wavelet network as its nonlinearity estimator. LinModel is a discrete time input-output polynomial model of ARX structure (idpoly) for single-output systems, and idarx object, for multi-output systems. LinModel sets the model orders, input delay, input-output channel names and units, sample time, and time unit of \(m\), and the polynomials initialize the linear function of the nonlinearity estimator.
```

m = nlarx(data,LinModel,Nonlinearity) specifies a nonlinearity
estimator Nonlinearity.
m =
nlarx(data,LinModel,Nonlinearity,'PropertyName',PropertyValue),

```

\section*{nlarx}
constructs and estimates the model using options specified as idnlarx property name and value pairs.
```

Input data
Arguments
Time-domain iddata object.

```
na nb nk

Positive integers that specify the model orders and delays.
For ny output channels and nu input channels, na is an ny-by-ny matrix whose \(i\)-jth entry gives the number of delayed \(j\) th outputs used to compute the \(i\) th output. nb and nk are ny-by-nu matrices, where each row defines the orders for the corresponding output.

\section*{Nonlinearity}

Nonlinearity estimator, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
'wavenet' or wavenet object (default)
'sigmoidnet' or sigmoidnet object
'treepartition' or treepartition object
'linear' or [] or linear object
neuralnet object
customnet object

Wavelet network

Sigmoid network
Binary-tree
Linear function
Neural network
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting Nonlinearity to an ny-by- 1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify Nonlinearity as a single nonlinearity estimator.

\section*{LinModel}

Discrete time input-output polynomial model of ARX structure, typically estimated using the arx command:
- idpoly object for single-output systems
- idarx object for multi-output systems

Examples Estimate nonlinear ARX model with default settings:
```

load twotankdata
Ts = 0.2; % Sampling interval is 0.2 min
z = iddata(y,u,Ts); % constructs iddata object
m = nlarx(z,[4 4 1]) % na=nb=4 and nk=1

```

Estimate nonlinear ARX model with a specific nonlinearity:
```

    NL = wavenet('NumberOfUnits',5);
    % Wavelet network has 5 units
m = nlarx(z,[4 4 1],NL)

```

Estimate nonlinear ARX model with a custom network nonlinearity:
```

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
g = - 2*x.*f;
a = 0.2;
end
% Estimate nonlinear ARX model using the custom
% Gauss unit function.
H = @gaussunit;

```
```

CNetw = customnet(H);
m = nlarx(data,[na nb nk],CNetw)

```

Estimate nonlinear ARX model with specific algorithm settings:
```

    m = nlarx(z,[4 4 1],'sigmoidnet','MaxIter',50,...
    'Focus','Simulation')
    % Maximum number of estimation iterations is 50.
% Estimation focus 'simulation' optimizes model for
% simulation applications.

```

Estimate nonlinear ARX model from time series data:
```

t = 0:0.01:10;
y = 10*sin(2*pi*10*t)+rand(size(t));
z = iddata(y',[],0.01);
m = nlarx(z,2,'sigmoid')
compare(z,m,1) % compare 1-step-ahead
% prediction pf response

```

Estimate nonlinear ARX model and avoid local minima:
```

\% Estimate initial model.
load iddata1
m1=nlarx(z1,[4 2 1],'wave','nlr',[1:3])
\% Perturb parameters slightly to avoid local minima:
m2=init(m1)
\% Estimate model with perturbed initial parameter values:
m2=nlarx (z1,m2)

```

Estimate nonlinear ARX model with custom regressors:
```

% Load sample data z1 (iddata object).
load iddata1
% Estimate the model parameters:
m = nlarx(z1,[0 0 0],'linear','CustomReg',...
{'y1(t-1)^2',...
'y1(t-2)*u1(t-3)'})
% na=nb=nk=0 means there are no standard regressors.
% 'linear' means that the nonlinear estimator has only
% the linear function.

```

Estimate nonlinear ARX model with custom regressor object:
```

% Load sample data z1 (iddata object):
load iddata1
% Define custom regressors as customreg objects:
C1 = customreg(@(x)x^2,{`y1'}, [1]); % y1(t-1)^2     C2 = customreg(@(x,y)x*y,{`y1', `u1'},...     [2 3]); % y1(t-2)*u1(t-3)     C = [C1, C2]; % object array of custom regressors % Estimate model with custom regressors:     m = nlarx(z1,[0 O 0],`linear',`CustomReg',C);
% List all model regressors:
getreg(m)

```

Estimate nonlinear ARX model and search for optimum regressors for input to the nonlinear function:
```

load iddata1
m = nlarx(z1,[4 4 1],'sigmoidnet',...
'NonlinearRegressors','search');
m.NonlinearRegressors
% regressors indices in nonlinear function

```

Estimate nonlinear ARX model with selected regressors as inputs to the nonlinear function:
```

    load iddata1
    m = nlarx(z1,[4 4 1],'sigmoidnet',...
    'NonlinearReg','input');
    % Only input regressors enter the nonlinear function.
% m is linear in past outputs.

```

Estimate nonlinear ARX model with no linear term in the nonlinearity estimator:
```

load iddata1
SNL = sigmoidnet('LinearTerm','off')
m = nlarx(z1,[2 2 1],SNL);

```

Estimate MIMO nonlinear ARX model that has the same nonlinearity estimator for all output channels:
```

    m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
    sigmoidnet('num',7))
    % m uses a sigmoid network with 7 units
% for all output channels.

```

Estimate MIMO nonlinear ARX model with different nonlinearity estimator for each output channel:
```

    m = nlarx(data,[[2 1;0 1] [2;1] [1;1]],...
    ['wavenet'; sigmoidnet('num',7)])
    % first output channel uses a wavelet network
% second output channel uses a sigmoid network with 7 units

```

Estimate a nonlinear ARX model using an ARX model:
```

% Estimate linear ARX model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
LinearModel = arx(DetrendedData, [2 1 1], 'Focus', 'Simulation');
% Estimate nonlinear ARX model using linear model to model
% output saturation in data.
NonlinearModel = nlarx(ThrottleData, LinearModel, 'sigmoidnet',...
'Focus', 'Simulation')

```
See Also addreg | customreg | getreg | idnlarx | init | polyreg
Tutorials - "Example - Using nlarx to Estimate Nonlinear ARX Models"
- "Example - Using Linear ARX Models to Estimate Nonlinear ARX Models"
How To - "Identifying Nonlinear ARX Models"- "Using Linear Model for Nonlinear ARX Estimation"

Purpose Estimate Hammerstein-Wiener model
```

Syntax $\quad m=n l h w(d a t a,[n b$ nf nk])
$m=n l h w(d a t a,[n b n f n k], I n p u t N L, O u t p u t N L)$
$m=$ nlhw(data,[nb nf nk],InputNL,OutputNL,'PropertyName',
PropertyValue)
$m=n l h w(d a t a, L i n M o d e l)$
$m=$ idnlhw(LinModel,InputNL,OutputNL)
m = idnlhw(LinModel,InputNL,OutputNL,'PropertyName',
PropertyValue)

```

\section*{Description}
\(m=n l h w(d a t a,[n b n f n k])\) creates and estimates a Hammerstein-Wiener model using piecewise linear functions as its input and output nonlinearity estimators. data is a time-domain iddata object. \(n b, n f\), and \(n k\) are positive integers that specify the model orders and delay. \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay.
\(m=\) nlhw(data, [nb nf nk],InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL, as a nonlinearity estimator object or string representing the nonlinearity estimator type.
\(m=n l h w(d a t a,[n b n f\)
nk],InputNL, OutputNL, 'PropertyName', PropertyValue) creates and estimates the model using options specified as idnlhw property name and value pairs. Specify PropertyName inside single quotes.
\(m=\) nlhw(data,LinModel) creates and estimates a
Hammerstein-Wiener model using a linear model (in place of [nb nf nk]), and default piecewise linear functions for the input and output nonlinearity estimators. LinModel is a discrete-time input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)) for single-output systems, and idss model with \(K=0\) for multi-output systems. LinModel sets the model orders, input delay, \(B\) and \(F\) polynomial values, input-output names and units, sampling time and time units of \(m\).
\(m\) = idnlhw(LinModel,InputNL,OutputNL) specifies input nonlinearity InputNL and output nonlinearity OutputNL.
\(m=\)
idnlhw(LinModel, InputNL, OutputNL, 'PropertyName', PropertyValue) creates and estimates the model using options specified as idnlhw property name and value pairs.

\section*{Input \\ Arguments}
data
Time-domain iddata object.
\(n b, n f n k\)
Order of the linear transfer function, where \(n b\) is the number of zeros plus \(1, n f\) is the number of poles, and \(n k\) is the input delay.

For nu inputs and ny outputs, nb, nf and, nk are ny-by-nu matrices whose \(i\)-jth entry specifies the orders and delay of the transfer function from the \(j\) th input to the \(i\) th output.

\section*{InputNL, OutputNL}

Input and output nonlinearity estimators, respectively, specified as a nonlinearity estimator object or string representing the nonlinearity estimator type.
'pwlinear' or pwlinear object (default)
'sigmoidnet' or sigmoidnet object
'wavenet' or wavenet object
'saturation' or saturation object
'deadzone' or deadzone object
'poly1d' or poly1d object

Piecewise linear function

Sigmoid network
Wavelet network
Saturation
Dead zone
One-
dimensional polynomial

\section*{nlhw}
'unitgain' or unitgain object
customnet object

Unit gain
Custom network

Specifying a string creates a nonlinearity estimator object with default settings. Use object representation to configure the properties of a nonlinearity estimator.

For ny output channels, you can specify nonlinear estimators individually for each output channel by setting InputNL or OutputNL to an ny-by-1 cell array or object array of nonlinearity estimators. To specify the same nonlinearity for all outputs, specify a single input and output nonlinearity estimator.

\section*{LinModel}

Discrete time linear model, typically estimated using the oe or n4sid command:
- Input-output polynomial model of Output-Error (OE) structure (idpoly) or state-space model with no disturbance component (idss with \(K=0\)), for single-output systems
- State-space model with no disturbance component (idss model with \(K=0\)), for multi-output systems

\section*{Examples Estimate a Hammerstein-Wiener model:}
```

load iddata3
m1=nlhw(z3,[4 2 1],'sigmoidnet','deadzone')

```

Estimate a Hammerstein model with saturation:
```

    load iddata1
    % Create a saturation object with lower limit of 0
% and upper limit of 5:
InputNL = saturation('LinearInterval', [0 5]);
% Estimate model with no output nonlinearity.

```
```

m = nlhw(z1,[2 3 0],InputNL,[]);

```

Estimate a Wiener model with a nonlinearity containing 5 sigmoid units:
```

load iddata1
m2 = nlhw(z1,[2 3 0],[],sigmoidnet('num', 5))

```

Estimate a Hammerstein-Wiener model with a custom network nonlinearity:
```

% Define custom unit function and save it as gaussunit.m.
function [f, g, a] = GAUSSUNIT(x)
[f, g, a] = gaussunit(x)
f = exp(-x.*x);
if nargout>1
g = - 2*x.*f;
a = 0.2;
end
% Estimate Hammerstein-Wiener model using the custom
% Gauss unit function.
H = @gaussunit;
CNetw = cutomnet(H);
m = nlhw(data,[na nb nk],CNetw)

```

Estimate a MISO Hammerstein model with a different nonlinearity for each input:
```

m = nlhw(data,[nb,nf,nk],...
[sigmoidnet;pwlinear],...
[])

```

\section*{nlhw}

Refine a Hammerstein-Wiener model using successive calls of nlhw:
```

load iddata3
m3 = nlhw(z3,[4 2 1],'sigmoidnet','deadzone')
m3 = nlhw(z3,m3)
LinearBlock = m3.LinearModel % retrieves the linear block

```

Estimate a Hammerstein-Wiener model and avoid local minima:
```

load iddata3
M1 = nlhw(z3, [2 2 1], 'sigm','wave'); % original model
M1p = init(M1); % randomly perturbs parameters about nominal values
M2 = pem(z3, M1p); % estimates parameters of perturbed model

```

Estimate default Hammerstein-Wiener model using an input-output polynomial model of Output-Error (OE) structure:
```

% Estimate linear OE model.
load throttledata.mat
Tr = getTrend(ThrottleData);
Tr.OutputOffset = 15;
DetrendedData = detrend(ThrottleData, Tr);
LinearModel = oe(DetrendedData, [1 2 1], 'Focus', 'Simulation');
% Estimate Hammerstein-Wiener model using OE model as
% its linear component and saturation as its output nonlinearity.
NonlinearModel = nlhw(ThrottleData, LinearModel, [], 'saturation')

```
See Also \(\quad\)\begin{tabular}{l}
customnet | deadzone | findop(idnlhw) | linapp | \\
\\
linearize \((i d n l h w) \mid\) idnlhw | pem | poly1d | pwlinear | saturation \\
\\
| sigmoidnet | unitgain | wavenet
\end{tabular}

Tutorials
- "Example - Using nlhw to Estimate Hammerstein-Wiener Models"
- "Example - Using Linear OE Models to Estimate Hammerstein-Wiener Models"

How To
- "Identifying Hammerstein-Wiener Models"
- "Using Linear Model for Hammerstein-Wiener Estimation"

Purpose

Syntax
\(\bmod 1=\) noisecnv(mod)
mod2 \(=\) noisecnv(mod,'norm')

\section*{Description} channels only

Transform idmodel object with noise channels to model with measured
mod is any idmodel, idarx, idgrey, idpoly, or idss.
The noise input channels in mod are converted as follows: Consider a model with both measured input channels \(u\) (\(n u\) channels) and noise channels \(e\) (\(n y\) channels) with covariance matrix \(\Lambda\) :
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that mod. NoiseVariance \(=\Lambda\). The model can also be described with unit variance, using a normalized noise source \(v\) :
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]
- mod1 = noisecnv(mod) converts the model to a representation of the system \([G H]\) with \(n u+n y\) inputs and \(n y\) outputs. All inputs are treated as measured, and mod1 does not have any noise model. The former noise input channels have names e@yname, where yname is the name of the corresponding output.
- mod2 \(=\) noisecnv(mod,'norm') converts the model to a representation of the system [GHL] with nu+ny inputs and ny outputs. All inputs are treated as measured, and mod2 does not have any noise model. The former noise input channels have names v@yname, where yname is the name of the corresponding output. Note that the noise variance matrix factor \(L\) typically is uncertain (has a nonzero covariance). This is taken into account in the uncertainty description of mod2.
- If mod is a time series, that is, \(n u=0\), mod 1 is a model that describes the transfer function \(H\) with measured input channels. Analogously, mod2 describes the transfer function \(H L\).

Note the difference with subreferencing:
- mod('m') gives a description of G only.
- mod('n') gives a description of the noise model characteristics as a time-series model, that is, it describes \(H\) and also the covariance of \(e\). In contrast, noisecnv (m('n')) describes just the transfer function \(H\). To obtain a description of the normalized transfer function \(H L\), use noisecnv(m('n'), 'norm').

Converting the noise channels to measured inputs is useful to study the properties of the individual transfer functions from noise to output. It is also useful for transforming idmodel objects to representations that do not handle disturbance descriptions explicitly.

Purpose Set step size for numerical differentiation

\section*{Syntax nds = nuderst(pars)}

Description The function pem uses numerical differentiation with respect to the model parameters when applied to state-space structures. The same is true for many functions that transform model uncertainties to other representations.

The step size used in these numerical derivatives is determined by the nuderst command. The output argument nds is a row vector whose kth entry gives the increment to be used when differentiating with respect to the kth element of the parameter vector pars.

The default version of nuderst uses a very simple method. The step size is the maximum of \(10^{-4}\) times the absolute value of the current parameter and \(10^{-7}\). You can adjust this to the actual value of the corresponding parameter by editing nuderst. Note that the nominal value, for example 0 , of a parameter might not reflect its normal size.

\section*{Purpose}

Plot Nyquist curve of frequency response with confidence interval

\section*{Syntax}
nyquist(m)
[fr,w] = nyquist(m)
[fr,w,covfr] = nyquist(m)
nyquist(m1,m2,m3,...,w)
nyquist(m1,'PlotStyle1',m2,'PlotStyle2',...)
nyquist(m1,m2,m3,..'sd*5',sd,'mode',mode)

\section*{Description}
nyquist computes the complex-valued frequency response of idmodel
and idfrd models. When invoked without output arguments, nyquist produces a Nyquist plot on the screen, that is, a graph of the frequency response's imaginary part against its real part.

The argument m is an arbitrary idmodel or idfrd model. This model can be continuous or discrete, and SISO or MIMO. The InputNames and OuputNames of the models are used to plot the responses for different I/O channels in separate plots. Pressing the Enter key advances the plot from one input-output pair to the next one. You can select specific I/O channels with normal subreferencing: \(\mathrm{m}(\mathrm{ky}, \mathrm{ku})\). With mode \(=\) 'same', all plots are given in the same diagram.
nyquist (\(m, w\)) explicitly specifies the frequency range or frequency points to be used for the plot. To focus on a particular frequency interval [wmin, wmax], set w = \{wmin, wmax\}. To use particular frequency points, set \(w\) to the vector of desired frequencies. Use logspace to generate logarithmically spaced frequency vectors. All frequencies should be specified in rad/s.
nyquist(m1,m2,...,mN) or nyquist(m1,m2,...mN,w) plots the Bode responses of several idmodels or idfrd models on a single figure. The models can be mixes of different sizes, and continuous or discrete. The sorting of the plots is based on the InputNames and OutputNames.
nyquist(m1, 'PlotStyle1', ..., mN, 'PlotStyleN') further specifies which color, line style, and/or marker should be used to plot each system, as in
```

nyquist(m1,'r--',m2,'gx')

```

When sd is specified as a number larger than zero, confidence regions are also plotted. These are ellipses in the complex plane and correspond to the region where the true response at the frequency in question is to be found with a confidence corresponding to sd standard deviations (of the Gaussian distribution).

If the argument indicating standard deviations is given as in ' \(s d+5\) ', a confidence region is plotted for every 5:th frequency, marking the center point by ' + '. The default is ' \(\mathrm{sd}+10\) '.

Note that the frequencies cannot be specified for idfrd objects. For those, the plot and response are calculated for the internally stored frequencies. If the frequencies \(w\) are specified when several models are treated, they will apply to all non-idfrd models in the list. If you want different frequencies for different models, you should first convert them to idfrd objects using the idfrd command.

For time-series models (no input channels), the Nyquist plot is not defined.

When nyquist is called with a single system and output arguments,
\[
f r=\text { nyquist }(m, w) \text { or }[f r, w, \operatorname{covfr}]=\text { nyquist }(m)
\]
no plot is drawn on the screen. If \(m\) has ny outputs and nu inputs, and \(w\) contains \(N w\) frequencies, then \(f r\) is an ny-by-nu-by-Nw array such that \(\mathrm{fr}(\mathrm{ky}, \mathrm{ku}, \mathrm{k})\) gives the complex-valued frequency response from input ku to output ky at the frequency w(k). For a SISO model, use \(\mathrm{fr}(:)\) to obtain a vector of the frequency response. The uncertainty information covfr is a 5-D array where covfr (ky, ku, \(\mathrm{k},:,:\))) is the 2 -by- 2 covariance matrix of the response from input ku to output ky at frequency \(w(k)\). The 1,1 element is the variance of the real part, the 2,2 element is the variance of the imaginary part, and the 1,2 and 2,1 elements are the covariance between the real and imaginary parts.
squeeze (covfr(ky,ku,k,:,:)) gives the covariance matrix of the corresponding response.

If m is a time series (no input), fr is returned as the (power) spectrum of the outputs, an ny-by-ny-by-Nw array. Hence \(f r(:,:, k)\) is the spectrum matrix at frequency \(w(k)\). The element \(f r(k 1, k 2, k)\) is the cross spectrum between outputs \(k 1\) and \(k 2\) at frequency \(w(k)\). When \(k 1\) \(=k 2\), this is the real-valued power spectrum of output \(k 1\). The covfr is then the covariance of the spectrum \(f r\), so that \(\operatorname{covfr}(k 1, k 1, k)\) is the variance of the power spectrum of output k1 at frequency w(k). No information about the variance of the cross spectra is normally given. (That is, \(\operatorname{covfr}(\mathrm{k} 1, \mathrm{k} 2, \mathrm{k})=0\) for k 1 not equal to k 2 .)

If the model \(m\) is not a time series, use \(f r=\operatorname{nyquist(m('n'))~to~obtain~}\) the spectrum information of the noise (output disturbance) signals.

\section*{Examples}
\[
\begin{aligned}
& \mathrm{g}=\mathrm{spa}(\text { data }) \\
& \mathrm{m}=\mathrm{n} 4 \mathrm{sid}(\text { data, } 3) \\
& \text { nyquist }\left(\mathrm{g}, \mathrm{~m}, \mathrm{~s}^{\prime} \mathrm{s}^{\prime}, 3\right)
\end{aligned}
\]

\section*{See Also}
```

bode
etfe
ffplot
freqresp
idfrd
spa
spafdr

```

\section*{Purpose Estimate state-space models using subspace method}
```

Syntax
m = n4sid(data)
m = n4sid(data,order,'Property1',Value1,...,'PropertyN',ValueN)

```

\section*{Description}
n 4 sid estimates models in state-space form and returns an idss object \(m\). n4sid handles an arbitrary number of inputs and outputs, including the time-series case (no input). The state-space model is in the innovations form
\[
\begin{aligned}
x(t+T s) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

If data is continuous-time (frequency-domain) data, a corresponding continuous-time state-space model is estimated.
data: An iddata object containing the output-input data. Both time-domain and frequency-domain signals are supported. data can also be a frd or idfrd frequency-response data object.
order: The desired order of the state-space model. If order is entered as a row vector (as in order = [1:10]), preliminary calculations for all the indicated orders are carried out. A plot is then given that shows the relative importance of the dimension of the state vector. More precisely, the singular values of the Hankel matrices of the impulse response for different orders are graphed. You are prompted to select the order, based on this plot. The idea is to choose an order such that the singular values for higher orders are comparatively small. If order = 'best', a model of "best" (default choice) order is computed among the orders \(1: 10\). This is the default choice of order.

\section*{Estimating the D Matrix}

Whether the \(D\) matrix is estimated or not is governed by the property nk, which is further described below. The default is that \(D\) is not estimated. By setting the kth entry of nk to 0 , the kth column of \(D\) (corresponding to the kth input) is estimated. To estimate a full \(D\) matrix thus, let \(n k=\operatorname{zeros}(1, n u)\) as in
\[
m=n 4 s i d(d a t a, o r d e r, ' n k ',[0 \ldots 0])
\]

This holds for both discrete- and continuous-time models.

\section*{Properties}

The list of property name/property value pairs can contain any idss and algorithm properties. See idss and Algorithm Properties.
idss properties that are of particular interest for n4sid are
- nk: For time-domain data, this gives delays from the inputs to the outputs, a row vector with the same number of entries as the number of input channels. Default is nk = [11... 1]. Note that delays of 0 or 1 show up as zeros or estimated parameters in the \(D\) matrix. Delays larger than 1 mean that a special structure of the \(A, B\), and C matrices is used to accommodate the delays. This also means that the actual order of the state-space model will be larger than order. For continuous-time models estimated from continuous-time (frequency-domain) data, the elements of nk are restricted to the values 1 and 0 .
- CovarianceMatrix (can be abbreviated to 'co'): Setting CovarianceMatrix to 'None' blocks all calculations of uncertainty measures. These can take the major part of the computation time. Note that, for a 'Free' parameterization, the individual matrix elements cannot be associated with any variance. (These parameters are not identifiable.) Instead, the resulting model m stores a hidden state-space model in canonical form that contains covariance information. This is used when the uncertainty of various input-output properties is calculated. It can also be retrieved by \(\mathrm{m} . \mathrm{ss}=\) 'can'. The actual covariance properties of n4sid estimates are not known today. Instead the Cramer-Rao bound is computed and stored as an indication of the uncertainty.
- DisturbanceModel: Setting DisturbanceModel to 'None' will deliver a model with \(\mathrm{K}=0\). This has no direct effect on the dynamics model other than that the default choice of N 4 Horizon will not involve past outputs.
- InitialState: The initial state is always estimated for better accuracy. However, it is returned with \(m\) only if InitialState \(=\) 'Estimate'.

Algorithm properties that are of special interest are
- Focus: Assumes the values 'Prediction' (default), 'Simulation', 'Stability ', passbands, or any SISO linear filter (given as an LTI or idmodel object, or as filter coefficients. See Algorithm Properties.) Setting 'Focus' to 'Simulation' chooses weights that should give a better simulation performance for the model. In particular, a stable model is guaranteed. Selecting a linear filter focuses the fit to the frequency ranges that are emphasized by this filter.
- N4Weight: This property determines some weighting matrices used in the singular-value decomposition that is a central step in the algorithm. Two choices are offered: 'MOESP ', corresponding to the MOESP algorithm by Verhaegen, and 'CVA', which is the canonical variable algorithm by Larimore. The default value is 'N4Weight' = 'Auto', which gives an automatic choice between the two options. m.EstimationInfo.N4Weight tells you what the actual choice turned out to be.
- N4Horizon: Determines the prediction horizons forward and backward used by the algorithm. This is a row vector with three elements: N4Horizon = [\(r\) sy su], where \(r\) is the maximum forward prediction horizon. That is, the algorithm uses up to \(r\) step-ahead predictors. sy is the number of past outputs, and su is the number of past inputs that are used for the predictions. See pages 209 and 210 in Ljung (1999) for the exact meaning of this. These numbers can have a substantial influence on the quality of the resulting model, and there are no simple rules for choosing them. Making 'N4Horizon' a k-by-3 matrix means that each row of 'N4Horizon' is tried, and the value that gives the best (prediction) fit to data is selected. (This option cannot be combined with selection of model order.) If the property 'Display' is 'On', information about the results is given in the MATLAB Command Window.

If you specify only one column in 'N4Horizon', the interpretation is \(r=s y=s u\). The default choice is 'N4Horizon' = 'Auto', which uses an Akaike Information Criterion (AIC) for the selection of sy and su. If 'DisturbanceModel' = 'None', sy is set to 0 . Typing m.EstimationInfor.N4Horizon will tell you what the final choices of horizons were.

\section*{Algorithm}

\section*{Examples}

\section*{Learn More}

The algorithm is described in Section 10.6 in Ljung (1999).

Build a fifth-order model from data with three inputs and two outputs. Try several choices of auxiliary orders. Look at the frequency response of the model.
```

z = iddata([y1 y2],[ u1 u2 u3]);
m = n4sid(z,5,'n4h',[7:15]','Display','on');
bode(m,'sd',3)

```

Estimate a continuous-time model, in a canonical form parameterization, focusing on the simulation behavior. Determine the order yourself after seeing the plot of singular values.
```

m = n4sid(z,[1:10],'foc','sim','ssp','can','ts',0)
bode (m)

```

For definition of state-space models and how to estimate them from input-output data, see "Identifying State-Space Models".
For more information about estimating state-space models from time-series data, see "Estimating State-Space Time-Series Models".

Other references:
van Overschee, P., and B. De Moor, Subspace Identification of Linear Systems: Theory, Implementation, Applications, Kluwer Academic Publishers, 1996.

Verhaegen, M., "Identification of the deterministic part of MIMO state space models," Automatica, Vol. 30, pp. 61-74, 1994.

Larimore, W.E., "Canonical variate analysis in identification, filtering and adaptive control," In Proc. 29th IEEE Conference on Decision and Control, pp. 596-604, Honolulu, 1990.

\section*{See Also}

Algorithm Properties
idss
pem

\section*{Purpose}

Output-error (OE) model parameter estimation
Syntax
\(m=0 e(d a t a,[n b n c n k])\)
\(m=0 e(d a t a,[n b n c n k], ' P r o p e r t y N a m e ', P r o p e r t y V a l u e)\)
\(m=0 e\left(d a t a, m _i n i t i a l\right)\)

\section*{Description}
\(m=o e(d a t a,[n b n c n k])\) estimates output-error model parameters and their covariances from input-output data. data is frequency-domain or time-domain iddata, idfrd, or frd object. \(m\) is an idpoly object. \(n b\) and \(n c\) are orders of the \(B\) and \(C\) polynomials, respectively. \(n k\) is the input delay. Orders and delay are scalar for single-input data, and row vectors for multiple-input data with the same size as the number of input channels.
```

m = oe(data,[nb nc nk],'PropertyName',PropertyValue)

```
estimates Box-Jenkins model using algorithm options specified by idpoly property name-value pairs. See Algorithm Properties.
\(m=\) oe(data,m_initial) refines previously estimated model m_initial, which is an idpoly object.

For multiple-input systems, nb, nf, and nk are row vectors with as many entries as there are input channels. Entry number i then describes the orders and delays associated with the ith input.
oe does not support multiple-output models.

\section*{Properties}

The structure and the estimation algorithm are affected by any property name/property value pairs that are set in the input argument list. Useful properties are 'Focus', 'InitialState', 'InputDelay', 'SearchMethod', 'MaxIter', 'Tolerance', 'LimitError', 'FixedParameter', and 'Display'.

See Algorithm Properties, idpoly, and idmodel for details of these properties and their possible values.

Use a state-space model for this case (see n4sid and pem).

\section*{Definitions Output-Error (OE) Model}

The general Output-Error model structure is:
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]

The orders of the Output-Error model are:
\[
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
\]

\section*{Continuous-Time Output-Error Model}

If data is continuous-time (frequency-domain) data, oe estimates a continuous-time model with transfer function:
\[
G(s)=\frac{B(s)}{F(s)}=\frac{b_{n b} s^{(n b-1)}+b_{n b-1} s^{(n b-2)}+\ldots+b_{1}}{s^{n f}+f_{n f} s^{(n f-1)}+\ldots+f_{1}}
\]

The orders of the numerator and denominator are nb and nf, similar to the discrete-time case. However, the delay nk has no meaning and you should omit it.

\section*{Algorithm}

\section*{Examples Estimating Output-Error (OE) model of the type}
\[
\begin{aligned}
& G(s)=\frac{b}{s^{3}+f_{1} s^{2}+f_{2} s+f_{3}}: \\
& \quad \% \text { Use fast sampled data (Ts }=0.001) \\
& \% \text { from a plant with bandwidth of about } 500 \mathrm{rad} / \mathrm{s} . \\
& \mathrm{z}=\text { iddata(} \mathrm{y}, \mathrm{u}, 0.001) \text {; } \\
& \mathrm{zf}=\mathrm{fft}(\mathrm{z}) ;
\end{aligned}
\]

Algorithm minimizes prediction errors. oe algorithm is similar to armax, but oe uses slightly different methods for computing prediction errors and gradients.
```

zf.ts = 0;
m = oe(zf,[1 3],'foc',[0 500])

```

See Also
How To

Algorithm Properties | EstimationInfo | idpoly | pem | n4sid
- "Using Linear Model for Hammerstein-Wiener Estimation"

\section*{operspec(idnlarx)}
\begin{tabular}{ll}
Purpose & Construct operating point specification object for idnlarx model \\
Syntax & SPEC = operspec (NLSYS) \\
Description & \begin{tabular}{l}
SPEC = operspec (NLSYS) creates an operating point specification \\
object for the idnlarx model NLSYS. The object encapsulates \\
constraints on input and output signal values. These specifications \\
are used to determine an operating point of the idnlarx model using \\
findop(idnlarx).
\end{tabular} \\
Input & - NLSYS: idnlarx model. \\
Output & \begin{tabular}{l}
- SPEC: Operating point specification object. SPEC contains the \\
following properties:
\end{tabular}
\end{tabular} following properties:
- Input: Structure with fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: - Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.
- Output: Structure with fields:
- Value: Initial guess for the values of the output signals. Default value: Vector of zeros.
- Min: Minimum value constraint on values of output signals for the model. Default value: - Inf.
- Max: Maximum value constraint on values of output signals for the model. Default value: - Inf.

\section*{See Also}
findop(idnlarx)

\title{
Purpose Construct operating point specification object for idnlhw model
}

\section*{Syntax \(\quad\) SPEC \(=\) operspec (NLSYS)}

Description SPEC = operspec (NLSYS) creates an operating point specification object for the idnlhw model NLSYS. The object encapsulates constraints on input and output signal values. These specifications are used to determine an operating point of the idnlhw model using findop(idnlhw).

Input
- NLSYS: idnlhw model.

Output
- SPEC: Operating point specification object. SPEC contains the following fields:
- Value: Initial guess for the values of the input signals. Specify a vector of length equal to number of model inputs. Default value: Vector of zeros.
- Min: Minimum value constraint on values of input signals for the model. Default: - Inf for all channels.
- Max: Maximum value constraint on values of input signals for the model. Default: Inf for all channels.
- Known: Specifies when Value is known (fixed) or is an initial guess. Use a logical vector to denote which signals are known (logical 1, or true) and which have to be estimated using findop (logical 0, or false). Default value: true.

\section*{Note}

1 If the input is completely known ('Known' field is set to true for all input channels), then the initial state values are determined using input values only. In this case, findop (idnlhw) ignores the output signal specifications.

2 If the input values are not completely known, findop(idnlhw) uses the output signal specifications to achieve the following objectives:
- Match target values of known output signals (output channels with Known = true).
- Keep the free output signals (output channels with Known = false) within the specified \(\mathrm{min} / \mathrm{max}\) bounds.

See Also
findop(idnlhw)

\section*{Purpose \\ Prediction errors associated with model and data set}

\section*{Syntax}

Description
e = pe(m,data)
[e,x0] = pe(m,data,init)
data is the output-input data set, given as an iddata object, and \(m\) is any idmodel or idnlmodel object. Both time-domain and frequency-domain data are supported, and data can also be an idfrd object.
e is returned as an iddata object, so that e. OutputData contains the prediction errors that result when model \(m\) is applied to the data.
\(e(t)=H^{-1}(q)[y(t)-G(q) u(t)]\)
The argument init determines how to deal with the initial conditions:
- init \(=\) 'e(stimate) ' means that the initial state is chosen so that the norm of prediction error is minimized. This initial state is returned as x 0 .
- init = 'd(elayexpand)': Same as 'estimate', but for a model with nonzero InputDelay, the delays are first converted to explicit model delays (using inpd2nk) so that they are contained in \(x 0\).
- init \(=' z(e r o)\) ' sets the initial state to zero.
- init \(=\) 'm(odel)' uses the model's internally stored initial state.
- init \(=x 0 i\), where \(x 0 i\) is a column vector of appropriate dimension, uses that value as initial state. For multiexperiment data, x0i may be a matrix whose columns give different initial states for each experiment. For a continuous-time model m, x0 is the initial state for this model. Any modifications of the initial state that sampling might require are automatically handled. If \(m\) has a non-zero InputDelay, and you need to access the values of the inputs during this delay, you must first apply inpd2nk (\(m\)). If \(m\) is continuous in time, it must first be sampled before inpd2nk can be applied.

If init is not specified for linear models, its value is determined, as follows:
- If m.InitialState is 'Estimate', 'Backcast', and 'Auto', init = 'Estimate'.
- If m.InitialState is 'Zero', init = 'zero'.
- If m.InitialState is 'Model' or 'Fixed', init = 'model'. For idss, idproc, and idgrey models, init corresponds to the m.x0 values. For other linear models, init = 'zero'.

If init is not specified for idnlgrey models, init = 'Model' is the default. The values and their estimation behavior are inherited from m. InitialStates.

If init is not specified for idnlarx models, init = 'Estimate' is the default. This corresponds to the first few samples of predicted outputs exactly matching the first few output samples in the data set.
If init is not specified for idnlhw models, init = 'Estimate' is the default. This computes initial states by minimizing the prediction errors over the available data range.

The output argument \(x 0\) is the value of the initial state used. If data contains several experiments, \(x 0\) is a matrix containing the initial states from each experiment.
See Also \begin{tabular}{ll}
compare \\
predict \\
resid \\
sim \\
simsd
\end{tabular}
Purpose \(\quad\)\begin{tabular}{l}
Estimate model parameters using iterative prediction-error \\
minimization method
\end{tabular}

\section*{Syntax}
```

m = pem(data)
m = pem(data,mi)
m = pem(data,mi,'Property1',Value1,...,'PropertyN',ValueN)
m = pem(data,orders)
m = pem(data,'P1D')
m = pem(data,'nx',ssorder)
m = pem(data,'na',na,'nb',nb,'nc',nc,'nd',nd,'nf',nf,'nk',nk)
m = pem(data,orders,'Property1',Value1,...,'PropertyN',ValueN)

```

How to If you are using the System Identification Tool GUI, you can specify Use

\section*{Description}
pem is the basic estimation command in the toolbox and covers a variety of situations.
data is always an iddata object that contains the input/output data. Both time-domain and frequency-domain signals are supported. data can also be an frd or idfrd frequency-response data object. Estimation of noise models (\(K\) in state-space models and A, C, and D in polynomial models) is not supported for frequency-domain data.

\section*{With Initial Model}
mi is any idmodel or idnlmodel object. It could be a result of another estimation routine, or constructed and modified by the constructors (idarx, idpoly, idss, idgrey, idproc) and set. The properties of mi
can also be changed by any property name/property value pairs in pem as indicated in the syntax.
\(m\) is then returned as the best fitting model in the model structure defined by mi. The iterative search is initialized at the parameters of the initial/nominal model mi. m will be of the same class as mi.

\section*{Black-Box State-Space Models}

With \(m=\operatorname{pem}(d a t a, n)\), where \(n\) is a positive integer, or \(m=\) pem(data, ' \(n x\) ', \(n\)), a state-space model of order \(n\) is estimated.
\[
\begin{aligned}
x(t+T s) & =A x(t)+B u(t)+K e(t) \\
y(t) & =C x(t)+D u(t)+e(t)
\end{aligned}
\]

If data is continuous-time (frequency-domain) data, a corresponding continuous-time state space model is estimated.

The default is that it is estimated in a 'Free' parameterization that can be further modified by the properties 'nk', 'DisturbanceModel', and 'InitialState' (see the corresponding reference pages for idss and \(n 4\) sid). The model is initialized by \(n 4\) sid and then further adjusted by optimizing the prediction error fit.

You can choose among several different orders by
```

m = pem(data,'nx',[n1,n2,...nN])

```
and you are then prompted for the "best" order. By
```

m = pem(data,'best')

```
an automatic choice of order among 1:10 is made.
```

m = pem(data)

```
is short for \(m=\) pem(data, 'best'). To work with other delays, use, for example, \(m=\) pem(data,'best','nk',[0,...0]).

In this case \(m\) is returned as an idss model.

\section*{Estimating the D, K, and XO Matrices}

Whether the \(D\) matrix is estimated or not is governed by the property nk, which is further described below. The default is that \(D\) is not estimated. By setting the kth entry of nk to 0 , the kth column of \(D\) (corresponding to the kth input) is estimated. To estimate a full \(D\) matrix, let nk \(=\) zeros(1,nu), as in
```

m = pem(data,order,'nk',[0 .. 0])

```

This holds for both discrete- and continuous-time models.
For frequency-domain data, \(K\) is always fixed to 0 . For time-domain data, \(K\) is estimated by default. To fix \(K\) to 0 in this case, use
```

m = pem(data,order,'DisturbanceModel','none')

```

Similarily, XO is estimated if 'InitialState' is set to 'Estimate', and fixed to 0 if 'InitialState' is set to 'Zero'.

\section*{Black-Box Multiple-Input-Single-Output Models}

The function pem also handles the general multiple-input-single-output structure
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]

The orders of this general model are given either as
```

orders = [na nb nc nd nf nk]

```
or with (...'na', na, 'nb', nb,...) as shown in the syntax. Here na, \(\mathrm{nb}, \mathrm{nc}, \mathrm{nd}\), and nf are the orders of the model, and nk is the delay(s). For multiple-input systems, nb, nf, and nk are row vectors giving the orders and delays of each input. (See "What Are Black-Box Polynomial Models?" in the User's Guide for a definition of the orders.) When the orders are specified with separate entries, those not given are taken as zero.

For frequency-domain data, only estimation of \(B\) and \(F\) is supported. It is simpler to use oe in that case.

In this case, \(m\) is returned as an idpoly object.

\section*{Continuous-Time Process Models}

Entering for the initial model an acronym for a process model, as in
m = pem(data,'P2UI')
will estimate a continuous-time process model of the indicated type. See the reference page for idproc for details of possible model types and associated property name/property value pairs.

In this case, \(m\) is returned as an idproc model.

\section*{Properties}

In all cases the algorithm is affected by the properties (see Algorithm Properties for details):
- Focus can be set to 'Prediction' (default), 'Simulation', or a passband range.
- MaxIter and Tolerance govern the stopping criteria for the iterative search.
- LimitError deals with how the criterion can be made less sensitive to outliers and bad data.
- MaxSize determines the largest matrix ever formed by the algorithm. The algorithm goes into for loops to avoid larger matrices, which can be more efficient than using virtual memory.
- Display, with possible values 'Off', 'On', and 'Full', governs the information sent to the MATLAB Command Window.

For black-box state-space models, 'N4Weight' and 'N4Horizon' will also affect the result, since these models are initialized with an \(n 4\) sid estimate. See the reference page for n 4 sid.

Typical idmodel properties are (see idmodel properties for more details):
- Ts is the sampling interval. Set 'Ts ' \(=0\) to obtain a continuous-time state-space model. For discrete-time models, 'Ts' is automatically set to the sampling interval of the data. Note that, in the black-box case, it is usually better to first estimate a discrete-time model, and then convert that to continuous time using d2c.
- nk is the time delays from the inputs (not applicable to structured state-space models). Time delays specified by 'nk' will be included in the model.
- DisturbanceModel determines the parameterization of K for free and canonical state-space parameterizations, as well as for idgrey models. It also determines whether a noise model should be included for idproc models.
- InitialState: The initial state can have a substantial influence on the estimation result for systems with slow responses. It is most pronounced for output-error models (\(K=0\) for state-space and na \(=n c=n d=0\) for input/output models). The default value 'Auto'" estimates the influence of the initial state and sets the value to 'Estimate', 'Backcast', or 'Zero' based on this effect. Possible values of 'InitialState' are 'Auto', 'Estimate', 'Backcast', 'Zero', and 'Fixed'.

\section*{Examples}

Here is an example of a system with three inputs and two outputs. A canonical form state-space model of order 5 is sought.
```

z = iddata([y1 y2],[ u1 u2 u3]);
m = pem(z,5,'ss','can')

```

Building an ARMAX model for the response to output 2,
```

ma = pem(z(:,2,:),'na',2,'nb',[2 3 1],'nc',2,'nk',[1 2 0])

```

Comparing the models (compare automatically matches the channels using the channel names),
```

compare(z,m,ma)

```

\section*{Algorithm}
pem uses essentially the same algorithm as armax, with modifications to the computation of prediction errors and gradients.

PEM uses optimization to minimize the cost function, defined as follows for scalar outputs:
\[
V_{N}(G, H)=\sum_{t=1}^{N} e^{2}(t)
\]
where \(e(t)\) is the difference between the measured output and the predicted output of the model. For a linear model, this error is defined by the following equation:
\[
e(t)=H^{-1}(q)[y(t)-G(q) u(t)]
\]
\(e(t)\) is a vector and the cost function \(V_{N}(G, H)\) is a scalar value. The subscript \(N\) indicates that the cost function is a function of the number of data samples and becomes more accurate for larger values of \(N\). For multiple-output models, the previous equation is more complex.
For black-box models, PEM estimates an initial model and then varies the parameter values along a specific direction to decrease the cost function. As with any nonlinear optimization algorithm, there is a chance that the model might find a local minimum that is not accurate for a specific system.

\section*{See Also}
```

Algorithm Properties
EstimationInfo
armax
bj
oe

```
Purpose Level of excitation of input signals
```

Syntax
Ped = pexcit(Data)
[Ped.Maxnr] = pexcit(Data,Maxnr,Threshold)

```

Description Data is an iddata object with time- or frequency-domain signals.
Ped is the degree or order of excitation of the inputs in Data. A row vector of integers with as many components as there are inputs in Data. The intuitive interpretation of the degree of excitation in an input is the order of a model that the input is capable of estimating in an unambiguous way.

Maxnr is the maximum order tested. Default is \(\min (N / 3,50)\), where \(N\) is the number of input data.

Threshold is the threshold level used to measure which singular values are significant. Default is 1e-9.

\section*{References \\ Section 13.2 in Ljung (1999).}

\section*{See Also \\ advice \\ iddata}

\section*{Purpose \\ Syntax}

Plot iddata or model objects
```

plot(data)
plot(d1,...,dN)
plot(d1,PlotStyle1,...,dN,PlotStyleN)
plot(model)

```
data is the output-input data to be graphed, given as an iddata object. A split plot is obtained with the outputs on top and the inputs at the bottom.

One plot for each I/O channel combination is produced. Pressing the Enter key advances the plot. Typing Ctrl+C aborts the plotting in an orderly fashion.

To plot a specific interval, use plot (data (200:300)). To plot specific input/output channels, use plot(data(:,ky,ku)), consistent with the subreferencing of iddata objects.

If data.intersample = 'zoh', the input is piecewise constant between sampling points, and it is then graphed accordingly.

To plot severaliddata sets \(d 1, \ldots, d N\), use \(\operatorname{plot}(d 1, \ldots, d N) . I / O\) channels with the same experiment name, input name, and output name are always plotted in the same plot.

With PlotStyle, the color, line style, and marker of each data set can be specified
```

plot(d1,'y:*',d2,'b')

```
just as in the regular plot command.
model is an idmodel, idnlarx, or idnlhw object.

\section*{See Also}

Purpose Parameters from single-input and single-output polynomial model

\section*{Syntax}
```

[A,B,C,D,F] = polydata(m)
[A,B,C,D,F,dA,dB,dC,dD,dF] = polydata(m)

```

Description
This is essentially the inverse of the idpoly constructor. It returns the polynomials of the general model
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
as contained in the model m .
\(d A, d B\), etc. are the standard deviations of \(A, B\), etc.
m can be any single-output idmodel, that is, not just idpoly.
For multiple-output models you can use \([\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}]=\) polydata(m(ky,:)) to obtain the polynomials for the kyth output.

See Also
idmodel
idpoly
tfdata

\section*{Purpose Powers and products of standard regressors}

\section*{Syntax \\ Description}
\(R=\) polyreg(model)
\(R=\) polyreg(model,'MaxPower', \(n\))
\(R\) = polyreg(model,'MaxPower',n,'CrossTerm',CrossTermVal)

\section*{Examples}
\(R=\) polyreg(model) creates an array \(R\) of polynomial regressors up to the power 2 . If a model order has input \(u\) and output \(y, n a=n b=2\), and delay \(n k=1\), polynomial regressors are \(y(t-1)^{2}, u(t-1)^{2}, y(t-2)^{2}, u(t-2)^{2}\). model is an idnlarx object. You must add these regressors to the model by assigning the CustomRegressors model property or by using addreg.
\(R=\) polyreg(model,'MaxPower',\(n\)) creates an array \(R\) of polynomial regressors up to the power \(n\). Excludes terms of power 1 and cross terms, such as \(y(t-1)^{*} u(\mathrm{t}-1)\).
\(R=\) polyreg(model,'MaxPower', \(n\), 'CrossTerm',CrossTermVal) creates an array \(R\) of polynomial regressors up to the power \(n\) and includes cross terms (products of standards regressors) when CrossTermVal is 'on'. By default, CrossTermVal is 'off'.

Create polynomial regressors up to order 2:
```

% Estimate a nonlinear ARX model with
% na=nb=2 and nk=1.
% Nonlinearity estimator is wavenet.
load iddata1
m = nlarx(z1,[2 2 1])
% Create polynomial regressors:
R = polyreg(m);
% Estimate model:
m = nlarx(z1,[2 2 1],'wavenet','CustomReg',R);
% View all model regressors (standard and custom):
getreg(m)

```

Create polynomial regressors up to order 3:
\[
R=\text { polyreg(m,'MaxPower', } 3,{ }^{\prime} \text { CrossTerm', 'on') }
\]

If the model \(m\) that has three standard regressors \(a, b\) and \(c, R\) includes \(a^{\wedge} 2, b^{\wedge} 2, c^{\wedge} 2, a^{*} b, a^{*} c, b^{*} c, a^{\wedge} 2^{*} b, a^{\wedge} 2^{*} c, a^{*} b^{\wedge} 2, a^{*} b^{*} c, a^{*} c^{\wedge} 2, b^{\wedge} 2^{*} c\), \(b^{*} c^{\wedge} 2, a^{\wedge} 3, b^{\wedge} 3\), and \(c^{\wedge} 3\).

\section*{See Also \\ addreg | customreg | getreg | idnlarx | nlarx}

How To . "Identifying Nonlinear ARX Models"

\section*{Purpose}
```

Syntax
t=poly1d('Degree',n)
t=poly1d('Coefficients',C)
t=poly1d(n)

```

\section*{Remarks}

Use poly1d to define a nonlinear function \(y=F(x)\), where \(F\) is a single-variable polynomial function of \(x\) :
\[
F(x)=c(1) x^{n}+c(2) x^{(n-1)}+\ldots+c(n) x+c(n+1)
\]

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(p)
% Get value of Coefficients property
p.Coefficients

```
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline Degree & \begin{tabular}{l}
Positive integer specifies the degree of the polynomial \\
Default=1.
\end{tabular} \\
For example: \\
poly1d('Degree ', 3\()\)
\end{tabular}

\section*{Examples}

Use poly1s to specify the single-variable polynomial nonlinearity estimator in Hammerstein-Wiener models. For example:
```

m=nlhw(Data,Orders,poly1d('deg',3),[]);

```
where 'deg' is an abbreviation for the property 'Degree'.

\section*{See Also \\ nlhw}

\section*{Purpose}

Predict output \(k\) steps ahead

\section*{Syntax}
yp = predict(m,data)
[yp,xOp,mpred] = predict(m,data,k,'InitialState',init)
data is the output-input data as an iddata object, and \(m\) is any idmodel or idnlmodel object. predict is meaningful only for time-domain data.

The argument k indicates that the \(k\) step-ahead prediction of y according to the model m is computed. In the calculation of \(y p(t)\), the model can use outputs up to time
\(t-k: y(s), s=t-k, t-k-1, \ldots\)
and inputs up to the current time \(t\). The default value of k is 1 .
The output yp is an iddata object containing the predicted values as OutputData.
\(x 0 p\) is the used (estimated) initial state vector. For multiexperiment data, \(x 0 p\) is a matrix, whose columns contain the initial states for each experiment.

The output argument mpred contains the \(k\) step-ahead predictor. This is given as a cell array, whose \(k\) th entry is an idpoly model for the predictor of output number \(k\). Note that these predictor models have as input both input and output signals in the data set. The channel names indicate how the predictor model and the data fit together.
init determines how to deal with the initial state:
- init = 'e(stimate)': The initial state is set to a value that minimizes the norm of the prediction error associated with the model and the data.
- init = 'd(elayexpand)': Same as 'estimate', but for a model with nonzero InputDelay, the delays are first converted to explicit model delays (using inpd2nk) so that they are contained in x0p.
- init = 'z(ero)' sets the initial state to zero.
- init = 'm(odel)' uses the model's internally stored initial state.

\section*{predict}
- init = x0, where \(x 0\) is a column vector of appropriate dimension, uses that value as initial state. For multiexperiment data, x0 can be a matrix whose columns give different initial states for each experiment. For a continuous-time model \(m\), \(x 0\) is the initial state for this model. Any modifications of the initial state that sampling might require are automatically handled. If \(m\) has a non-zero InputDelay, and you need to access the values of the inputs during this delay, you must first apply inpd2nk (m). When m is a continuous-time model, it must first be sampled before inpd2nk can be applied.

If init is not specified for linear models, its value is determined, as follows:
- If m. InitialState is 'Estimate', 'Backcast', and 'Auto', init = 'Estimate'.
- If m.InitialState is 'Zero', init = 'zero'.
- If m. InitialState is 'Model' or 'Fixed', init = 'model'. For idss, idproc, and idgrey models, init corresponds to the m.x0 values. For other linear models, init = 'zero'.

If init is not specified for idnlgrey models, init = 'Model' is the default. The values and their estimation behavior are inherited from m. InitialStates.

If init is not specified for idnlarx models, init = 'Estimate' is the default. This corresponds to the first few samples of predicted outputs exactly matching the first few output samples in the data set.

If init is not specified for idnlhw models, init = 'Estimate' is the default. This computes initial states by minimizing the prediction errors over the available data range.

An important use of predict is to evaluate a model's properties in the mid-frequency range. Simulation with sim (which conceptually corresponds to \(k=i n f)\) can lead to levels that drift apart, since the low-frequency behavior is emphasized. One step-ahead prediction is not a powerful test of the model's properties, since the high-frequency
behavior is stressed. The trivial predictor \(\hat{y}(t)=y(t-1)\) can give good predictions in case the sampling of the data is fast.

Another important use of predict is to evaluate time-series models. The natural way of studying a time-series model's ability to reproduce observations is to compare its \(k\) step-ahead predictions with actual data.

Note that for output-error models, there is no difference between the \(k\) step-ahead predictions and the simulated output, since, by definition, output-error models only use past inputs to predict future outputs.

\section*{Algorithm}

\section*{Examples}

The model is evaluated in state-space form, and the state equations are simulated \(k\) steps ahead with initial value \(x(t-k)=\hat{x}(t-k)\), where \(\hat{x}(t-k)\) is the Kalman filter state estimate.

Simulate a time series, estimate a model based on the first half of the data, and evaluate the four step-ahead predictions on the second half.
```

m0 = idpoly([1 -0.99],[],[1 -1 0.2]);
e = iddata([],randn(400,1));
y = sim(mO,e);
m = armax(y(1:200),[1 2]);
yp = predict(m,y,4);
plot(y(201:400),yp(201:400))

```

Note that the last two commands are also achieved by
compare (y,m,4,201:400);

\section*{See Also}
compare
pe
sim
simsd

\section*{predict(idnlarx)}

\section*{Purpose Predict output \(k\) steps ahead for nonlinear ARX model}
```

Syntax $\quad Y P=\operatorname{predict}(M O D E L, D A T A, K)$
YP = predict(SYS, DATA,K,INIT)
YP = predict(MODEL,DATA, K,'InitialState', INIT)

```

Description
YP = predict (MODEL, DATA, K) predicts the \(k\)-step ahead output with an idnlarx model.

YP = predict(SYS, DATA,K,INIT) or YP = predict(MODEL, DATA, K,'InitialState', INIT) specifies the initialization.

Input
- MODEL: idnlarx model object.
- DATA: iddata object.
- K: Prediction horizon. Old outputs up to time \(t\) - \(K\) are used to predict the output at time \(t\). All relevant inputs are used. Default value: \(\mathrm{K}=1\)).
- INIT: initialization specification. INIT can be the following:
- 'e': Assume the initial states of the model are such that the first \(N\) values of the predicted output match the first \(N\) samples of the measured output exactly, where \(N\) is the maximum channel delay in the model \((\mathrm{N}=\max (\) getDelayInfo(model) \())\). The initial states are not computed explicitly, but are assumed to exist. The prediction starts at the \((\mathrm{N}+1)^{\text {th }}\) sample, while a perfect match is assumed for the first N samples. If you want prediction of response values starting from the first data sample, you must estimate and provide the initial state vector explicitly as described in the following option for INIT \(=\) XO .
- Real column vector XO, for the state vector corresponding to an appropriate number of output and input data samples prior to the simulation start time. To build an initial state vector from a given set of input-output data or to generate equilibrium states, use data2state(idnlarx), findstates(idnlarx) or
findop(idnlarx). For multi-experiment data, XO may be a matrix whose columns give different initial states for different experiments.
- 'z': (Default) Zero initial state, equivalent to a zero vector of appropriate size.
- iddata object containing output and input data samples prior to the simulation start time. If it contains more data samples than necessary, only the last samples are taken into account. This syntax is equivalent to sim(MODEL, U, 'InitialState', data2state(MODEL, INIT)) where data2state(idnlarx) transforms the iddata object INIT to a state vector.

\section*{Output}

YP: Predicted output as an iddata object. If DATA contains multiple experiments, so will YP.

Note If predict is called without an output argument, MATLAB
software displays the predicted output(s) in a plot window. software displays the predicted output(s) in a plot window.

See Also
```

sim(idnlarx)
findop(idnlarx)
data2state(idnlarx)
findstates(idnlarx)

```

\section*{predict(idnlgrey)}

\section*{Purpose}

Predict output \(k\) steps ahead for nonlinear ODE model

\author{
Syntax \\ \section*{Description}
}

YP = predict(NLSYS,DATA);
[YP,XO,XFINAL] = predict(NLSYS,DATA);
[YP,XO,XFINAL] = predict(NLSYS,DATA,K);
[YP,XO,XFINAL] = predict(NLSYS,DATA,K,XOINIT);

Input
YP = predict(NLSYS, DATA) ; predicts the \(k\)-step ahead output with an idnlgrey model.
[YP,XO,XFINAL] = predict(NLSYS,DATA); returns the initial states used in the prediction as well as the final states computed, in addition to the predicted output.
[YP,XO,XFINAL] = predict(NLSYS,DATA,K); specifies the prediction horizon to use during prediction.
[YP, XO, XFINAL] = predict(NLSYS, DATA, K, XOINIT); specifies the initialization for the \(k\)-step ahead prediction.
- NLSYS: idnlgrey model for which output is to be predicted.
- DATA: Input-output data [\(Y \mathrm{U}\)]. U is the input data that can be given either as an iddata object or as a matrix \(U=\) [U1 U2 \(\ldots\) Um], where the \(k\) :th column vector is input \(U_{k}\). Similarly, \(Y\) is either an iddata object or a matrix of outputs (with as many columns as there are outputs). For time-continuous idnlgrey objects, DATA passed as a matrix will lead to that the data sample interval, Ts, is set to one.
- K: Prediction horizon. K and can be set to an integer between 1 and inf (pure simulation). As idnlgrey assumes an output error model structure, where prediction and simulation coincide, K has no meaning.
- XOINIT: Initial state to use. It can take the following values:
- 'zero' : Zero initial state \(x(0)\) with all states fixed (nlsys.InitialStates.Fixed is thus ignored).
- 'fixed': (or NLSYS.InitialState) Determines the values of the model initial states, but all states are fixed (NLSYS.InitialStates.Fixed is ignored).
- 'estimate': NLSYS.InitialState determines the value of the initial states and all initial states are estimated (NLSYS.InitialStates.Fixed is ignored).
- (Default) 'model': NLSYS.InitialState determines the value of the initial states, which initial states to estimate, and minimum and maximum state values.
- vector/matrix: Column vector of initial states. For multiple-experiment DATA, \(x(0)\) can be a matrix where each column contains initial states for the corresponding experiment. All initial states are fixed (nlsys. InitialStates. Fixed is ignored).
- struct array : An Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments.)
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- (Default) Fixed: Uses initial state values from NLSYS.InitialState.Value. Ignores NLSYS. InitialState.Fixed.

The initial state can also be specified using the property-value pair InitialState or XO, followed by the value XOINIT. For example: predict(NLSYS, DATA, K, 'InitialState',XOINIT).

\section*{predict(idnlgrey)}

\section*{Output}
- YP: Predicted output. If DATA is an iddata object, then YP will also be an iddata object. Otherwise, YP will be a matrix where the \(k\) :th output is found in the \(k\) :th column of YP. If DATA is a multiple experiment iddata object, then YP will be as well.
- X0: Initial states. In the single experiment case it is a column vector of length Nx. For multi-experiment data, X0 is an Nx-by-Ne matrix with the ith column specifying the initial state of experiment i.
- XFINAL: Final states computed. In the single experiment case it is a column vector of length Nx. For multi-experiment data, XFINAL is an Nx -by-Ne matrix with the ith column specifying the initial state of experiment i.

Note If predict is called without an output argument, MATLAB software displays the predicted output(s) in a plot window.

\section*{See Also}
sim(idnlgrey)
pe
pem

\section*{Purpose}

Predict output \(k\) steps ahead for Hammerstein-Wiener model

\section*{Syntax}

YP = predict (MODEL, DATA, K)
\(Y P=p r e d i c t(M O D E L, D A T A, K, I N I T)\)
YP = predict(MODEL, DATA,K,'InitialState', INIT)

YP \(=\) predict (MODEL, DATA, K) predicts the \(k\)-step ahead output with an idnlhw model.

YP = predict(MODEL, DATA,K,INIT) or \(\mathrm{YP}=\) predict (MODEL, DATA, K, 'InitialState', INIT) specifies the initialization.
- MODEL: idnlhw model object.
- DATA: iddata object.
- K: Prediction horizon. Old outputs up to time \(t\)-K are used to predict the output at time t . All relevant inputs are used. Default value: \(\mathrm{K}=1\)).
- INIT: Initialization specification. INIT can be the following:
- 'e': Estimate initial states minimizing the sum of squared prediction errors. To compute the initial state estimates explicitly, use findstates(idnlhw).
- Real column vector X0 for the initial state vector. To build an initial state vector from a given set of input-output data or to generate equilibrium states, see findstates(idnlhw) and findop(idnlhw). For multi-experiment data, X0 may be a matrix whose columns give different initial states for different experiments.
- 'z': (Default) Zero initial state, equivalent to a zero vector of appropriate size.

\section*{Output}

YP: Predicted output as an iddata object. If DATA contains multiple experiments, so will YP.

> Note If predict is called without an output argument, MATLAB software displays the predicted output(s) in a plot window.

\author{
See Also \\ findop(idnlhw) \\ findstates(idnlhw) \\ sim(idnlhw)
}

\section*{Purpose}

Display model information, including estimated uncertainty

\section*{Syntax}

Description
present(m)
The present function displays the model \(m\), together with the estimated standard deviations of the parameters, loss function, and Akaike's Final Prediction Error (FPE) Criterion (which essentially equals the AIC). It also displays information about how m was created.
\(m\) is any idmodel or idnlmodel object.
present thus gives more detailed information about the model than the standard display function.

\section*{Purpose \\ Class representing piecewise-linear nonlinear estimator for} Hammerstein-Wiener models
```

Syntax
t=pwlinear('NumberOfUnits',N)
t=pwlinear('BreakPoints',BP)
t=pwlinear(Property1,Value1,...PropertyN,ValueN)

```

\section*{Description}

\section*{Remarks}
pwlinear is an object that stores the piecewise-linear nonlinear estimator for estimating Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
t=pwlinear('NumberOfUnits',N) creates a piecewise-linear nonlinearity estimator object with N breakpoints.
t=pwlinear('BreakPoints', BP) creates a piecewise-linear nonlinearity estimator object with breakpoints at values BP.
t=pwlinear(Property1, Value1, ...PropertyN, ValueN) creates a piecewise-linear nonlinearity estimator object specified by properties in "pwlinear Properties" on page 2-353.

Use evaluate \((p, x)\) to compute the value of the function defined by the pwlinear object p at x .

Use pwlinear to define a nonlinear function \(y=F(x)\), where \(F\) is a piecewise-linear (affine) function of \(x\) and there are n breakpoints (x_k,y_k), k=1, .., n. y_k \(=\mathrm{F}\left(\mathrm{x}_{-} \mathrm{k}\right) . F\) is linearly interpolated between the breakpoints.
\(y\) and \(x\) are scalars.
\(F\) is also linear to the left and right of the extreme breakpoints. The slope of these extension is a function of \(x_{-} i\) and \(y_{\sim} i\) breakpoints. The breakpoints are ordered by ascending \(x\)-values, which is important when you set a specific breakpoint to a different value.

There are minor deviations from the breakpoint values you set and the values actually stored in the object because the toolbox represent breakpoints differently internally.

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(p)
% Get value of NumberOfUnits property
p.NumberOfUnits

```
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of breakpoints. \\
Default=10. \\
For example: \\
pwlinear('NumberOfUnits' , 5)
\end{tabular} \\
\hline BreakPoints & \begin{tabular}{l}
2-by-n matrix containing the breakpoint \(x\) and \(y\) value, \\
specified using the following format: \\
\(\quad\left[x _1, x_{-} 2, \ldots, x_{-} n ; y _1, y _2, \ldots, y _n\right]\)
\end{tabular} \\
& \begin{tabular}{l}
If set to a 1-by-n vector, the values are interpreted as \(x\)-values \\
and the corresponding \(y-v a l u e s ~ a r e ~ s e t ~ t o ~ z e r o . ~\)
\end{tabular} \\
\hline
\end{tabular}

\section*{Examples}

Use pwlinear to specify the piecewise nonlinearity estimator in Hammerstein-Wiener models. For example:
```

m=nlhw(Data,Orders,pwlinear('Br',[-1:0.1:1]),[]);

```

The piecewise nonlinearity is initialized at the specified breakpoints. The breakpoint values are adjusted to the estimation data by nlhw.

\section*{See Also}
nlhw

\section*{Purpose Plot zeros and poles with confidence interval}
```

Syntax
pzmap(m)
pzmap(m,'sd',sd)
pzmap(m1,m2,m3,...)
pzmap(m1,'PlotStyle1',m2,'PlotStyle2',...,'sd',sd)
pzmap(m1,m2,m3,..,'sd',sd,'mode',mode,'axis',axis)

```

\section*{Description}
\(m\) is any idmodel object: idarx, idgrey, idss, idproc, or idpoly.
The zeros and poles of \(m\) are graphed, with \(o\) denoting zeros and \(x\) denoting poles. Poles and zeros at infinity are ignored. For discrete-time models, zeros and poles at the origin are also ignored.

The Property/Value pairs 'sd'/sd, 'mode'/mode and `axis'/axis can appear in any order. They are explained below.

If sd has a value larger than zero, confidence regions around the poles and zeros are also graphed. The regions corresponding to sd standard deviations are marked. The default value is \(s d=0\). Note that the confidence regions might sometimes stretch outside the plot, but they are always symmetric around the indicated zero or pole.

If the poles and zeros are associated with a discrete-time model, a unit circle is also drawn. For continuous-time models, the real and imaginary axes are drawn.

When mi contains information about several different input/output channels, you have the following options:
mode \(=\) 'sub' splits the screen into several plots, one for each input/output channel. These are based on the InputName and OutputName properties associated with the different models.
mode = 'same' gives all plots in the same diagram. Pressing the Enter key advances the plots.
mode = 'sep' erases the previous plot before the next channel pair is treated.

The default value is mode = 'sub'.
axis \(=[x 1\) x2 y1 y2] fixes the axis scaling accordingly. axis \(=s\) is the same as
```

axis = [-s s -s s]

```

You can select the colors associated with the different models by using the argument PlotStyle. Use PlotStyle = 'b', 'g', etc. Markers and line styles are not used.

The noise input channels in \(m\) are treated as follows: Consider a model \(m\) with both measured input channels \(u\) (\(n u\) channels) and noise channels \(e\) (\(n y\) channels) with covariance matrix \(\Lambda\) :
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L,
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that m.NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\).
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]

Then,
- pzmap (m) plots the zeros and poles of the transfer function \(G\).
- pzmap (m('n')) plots the zeros and poles of the transfer function \(H\) (\(n y\) inputs and \(n y\) outputs). The input channels have names e@yname, where yname is the name of the corresponding output.
- If \(m\) is a time series, that is \(n u=0, \operatorname{pzmap}(m)\) plots the zeros and poles of the transfer function \(H\).
- pzmap(noisecnv(m)) plots the zeros and poles of the transfer function \([G H](n u+n y\) inputs and \(n y\) outputs). The noise input channels have names e@yname, where yname is the name of the corresponding output.
- pzmap(noisecnv(m, 'norm') plots the zeros and poles of the transfer function \([G H L]\) (\(n u+n y\) inputs and \(n y\) outputs). The noise input channels have names v@yname, where yname is the name of the corresponding output.

\section*{Examples}
```

mbj = bj(data,[2 2 1 1 1]);
mar = armax(data,[2 2 2 1]);
pzmap(mbj,mar,'sd',3)

```
shows all zeros and poles of two models along with the confidence regions corresponding to three standard deviations.

\section*{See Also \\ idmodel \\ zpkdata}

\section*{Purpose}

Estimate recursively parameters of ARMAX or ARMA models

\section*{Syntax}
thm = rarmax \((z, n n, a d m, a d g)\)
[thm, yhat, P,phi,psi] = rarmax(z,nn,adm,adg,th0,PO,phiO,psiO)
Description
The parameters of the ARMAX model structure
\[
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
\]
are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix \(z=\left[\begin{array}{ll}y & u\end{array}\right]\) where \(y\) and \(u\) are column vectors. \(n n\) is given as
```

nn = [na nb nc nk]

```
where na, nb, and nc are the orders of the ARMAX model, and nk is the delay. Specifically,
\[
\begin{array}{ll}
n a: & A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a} \\
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c}
\end{array}
\]

See "What Are Black-Box Polynomial Models?" for more information.
If \(z\) represents a time series \(y\) and \(n n=[n a n c]\), rarmax estimates the parameters of an ARMA model for \(y\).
\[
A(q) y(t)=C(q) e(t)
\]

Only single-input, single-output models are handled by rarmax. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k; that is, they are based on the data in the rows up to and including row kin z. Each row of thm contains the estimated parameters in the following order:
\[
\operatorname{thm}(k,:)=[a 1, a 2, \ldots, a n a, b 1, \ldots, b n b, c 1, \ldots, c n c]
\]
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument tho contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of tho is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phio, psi0, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use the outputs from a previous call to rarmax with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phio and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(\mathrm{nk}=0\), shift the input sequence appropriately and use \(\mathrm{nk}=1\).

Algorithm

Examples

The general recursive prediction error algorithm (11.44), (11.47) through (11.49) of Ljung (1999) is implemented. See "Algorithms for Recursive Estimation" for more information.

Compute and plot, as functions of time, the four parameters in a second-order ARMA model of a time series given in the vector \(y\). The forgetting factor algorithm with a forgetting factor of 0.98 is applied.
```

thm = rarmax(y,[2 2],'ff',0.98);
plot(thm)

```

\section*{Purpose}

Estimate parameters of ARX or AR models recursively

\section*{Syntax}
thm = rarx (z, nn, adm,adg)
[thm,yhat,P,phi] = rarx(z,nn,adm,adg,th0,PO,phiO)

\section*{Definitions}
\[
A(q) y(t)=B(q) u(t-n k)+e(t)
\]

The orders of the ARX model are:
\[
\begin{array}{ll}
n a: & A(q)=1+a_{1} q^{-1}+\ldots+a_{n a} q^{-n a} \\
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1}
\end{array}
\]

Models with several inputs are defined, as follows:

\section*{Inputs}

The general ARX model structure is:
\[
A(q) y(t)=B_{1}(q) u_{1}\left(t-n k_{1}\right)+\ldots+B_{\mathrm{nu}} u_{\mathrm{nu}}\left(t-n k_{\mathrm{nu}}\right)+e(t)
\]

\section*{z}
thm = rarx(z, nn, adm, adg) estimates the parameters thm of single-output ARX model from input-output data \(z\) and model orders \(n n\) using the algorithm specified by adm and adg. If \(z\) is a time series \(y\) and \(\mathrm{nn}=\mathrm{na}\), rarx estimates the parameters of a single-output AR model.
[thm,yhat, P, phi] = rarx(z,nn,adm,adg,th0, PO, phiO) estimates the parameters thm, the predicted output yhat, final values of the scaled covariance matrix of the parameters \(P\), and final values of the data vector phi of single-output ARX model from input-output data \(z\) and model orders nn using the algorithm specified by adm and adg. If \(z\) is a time series \(y\) and \(n n=n a\), rarx estimates the parameters of a single-output AR model.

Name of the matrix iddata object that represents the input-output data or a matrix \(z=[y u]\), where \(y\) and \(u\) are column vectors.

For multiple-input models, the \(u\) matrix contains each input as a column vector:
\[
u=\left[\begin{array}{lll}
u 1 & \ldots & u n u
\end{array}\right]
\]
nn
For input-output models, specifies the structure of the ARX model as:
```

nn = [na nb nk]

```
where na and nb are the orders of the ARX model, and nk is the delay.

For multiple-input models, nb and nk are row vectors that define orders and delays for each input.

For time-series models, \(n n=n a\), where na is the order of the AR model.

Note The delay nk must be larger than 0 . If you want nk = 0 , shift the input sequence appropriately and use \(n k=1\) (see nkshift).
adm and adg
adm \(=\) ' ff ' and adg = lam specify the forgetting factor algorithm with the forgetting factor \(\lambda=1\) am. This algorithm is also known as recursive least squares (RLS). In this case, the matrix P has the following interpretation: \(R_{2} / 2\) * P is approximately equal to the covariance matrix of the estimated parameters. \(R_{2}\) is the variance of the innovations (the true prediction errors \(e(t)\)).
adm ='ug' and adg = gam specify the unnormalized gradient algorithm with gain gamma = gam. This algorithm is also known as the normalized least mean squares (LMS).
adm ='ng' and adg = gam specify the normalized gradient or normalized least mean squares (NLMS) algorithm. In these cases, \(P\) is not applicable.
adm =' \(k f^{\prime}\) ' and adg \(=\mathrm{R} 1\) specify the Kalman filter based algorithm with \(R_{2}=1\) and \(R_{1}=\mathrm{R} 1\). If the variance of the innovations \(e(t)\) is not unity but \(R_{2}\); then \(R_{2}{ }^{*} \mathrm{P}\) is the covariance matrix of the parameter estimates, while \(R_{1}=\mathrm{R} 1 / R_{2}\) is the covariance matrix of the parameter changes.
tho
Initial value of the parameters in a row vector, consistent with the rows of thm.

Default: All zeros.
PO
Initial values of the scaled covariance matrix of the parameters.
Default: \(10^{4}\) times the identity matrix.
phio
The argument phio contains the initial values of the data vector:
\(\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]\)
If \(z=[y(1), u(1) ; \ldots \quad ; y(N), u(N)], p h i 0=\varphi(1)\) and \(p h i=\) \(\varphi(N)\). For online use of rarx, use phiO, th0, and P0 as the previous outputs phi, thm (last row), and P.

Default: All zeros.

\section*{Outputs}
thm
Estimated parameters of the model. The kth row of thm contains the parameters associated with time \(k\); that is, the estimate parameters are based on the data in rows up to and including row k in z . Each row of thm contains the estimated parameters in the following order:
```

thm(k,:) = [a1,a2,...,ana,b1,...,bnb]

```

For a multiple-input model, the \(b\) are grouped by input. For example, the \(b\) parameters associated with the first input are listed first, and the \(b\) parameters associated with the second input are listed next.
yhat
Predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

P
Final values of the scaled covariance matrix of the parameters.
phi
phi contains the final values of the data vector:
\(\varphi(t)=[y(t-1), \ldots, y(t-n a), u(t-1), \ldots, u(t-n b-n k+1)]\)

\section*{Examples}

Adaptive noise canceling: The signal \(y\) contains a component that originates from a known signal \(r\). Remove this component by recursively estimating the system that relates \(r\) to \(y\) using a sixth-order FIR model and the NLMS algorithm.
```

z = [y r];
[thm,noise] = rarx(z,[0 6 1],'ng',0.1);
% noise is the adaptive estimate of the noise
% component of y
plot(y-noise)

```

If this is an online application, you can plot the best estimate of the signal y - noise at the same time as the data \(y\) and \(u\) become available, use the following code:
```

phi = zeros(6,1);
P=1000*eye(6);
th = zeros(1,6);

```
```

axis([0 100 -2 2]);
plot(0,0,'*'), hold on
% Use a while loop
while ~abort
[y,r,abort] = readAD(time);
[th,ns,P,phi] = rarx([y r],'ff',0.98,th,P,phi);
plot(time,y-ns,'*')
time = time + Dt
end

```

This example uses a forgetting factor algorithm with a forgetting factor of 0.98 . readAD is a function that reads the value of an A/D converter at the indicated time instant.

\section*{See Also}
nkshift
rarmax
rbj
roe
rpem
rplr
"Algorithms for Recursive Estimation"

\section*{Purpose}

Estimate recursively parameters of Box-Jenkins models

\section*{Syntax}
thm = rbj(z, nn,adm,adg)
[thm,yhat,P,phi,psi] = rbj(z,nn,adm,adg,th0,PO,phiO,psiO)

\section*{Description}

The parameters of the Box-Jenkins model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix \(z=\left[\begin{array}{ll}y & u\end{array}\right]\) where \(y\) and \(u\) are column vectors. \(n n\) is given as
```

nn = [nb nc nd nf nk]

```
where nb, nc, nd, and nf are the orders of the Box-Jenkins model, and \(n k\) is the delay. Specifically,
\[
\begin{aligned}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n c: & C(q)=1+c_{1} q^{-1}+\ldots+c_{n c} q^{-n c} \\
n d: & D(q)=1+d_{1} q^{-1}+\ldots+d_{n d} q^{-n d} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{aligned}
\]

See "What Are Black-Box Polynomial Models?" for more information.
Only single-input, single-output models are handled by rbj. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time k ; that is, they are based on the data in the rows up to and including row k in z. Each row of thm contains the estimated parameters in the following order.
\[
\operatorname{thm}(k,:)=[b 1, \ldots, b n b, c 1, \ldots, c n c, d 1, \ldots, d n d, f 1, \ldots, f n f]
\]
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.
The actual algorithm is selected with the two arguments adm and adg. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of tho is all zeros.

The arguments P0 and \(P\) are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phio, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use the outputs from a previous call to rbj with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(n k=0\), shift the input sequence appropriately and use \(n k=1\).

\section*{Algorithm}

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

\section*{See Also}
nkshift
rarmax
rarx
roe
rpem
rplr

Purpose Determine whether iddata is based on real-valued signals

\section*{Syntax realdata(data)}

Description realdata returns 1 if
- data contains only real-valued signals.
- data contains frequency-domain signals, obtained by Fourier transformation of real-valued signals.

Otherwise realdata returns 0 .
Notice the difference with isreal:
load iddata1
isreal(z1); \% returns 1
\(z f=f f t(z 1) ;\)
isreal(zf) \% returns 0
realdata(zf) \% returns 1
zf = complex(zf) \% adds negative frequencies to zf realdata(zf) \% still returns 1
Purpose Resample time-domain data by decimation or interpolation (requiresSignal Processing Toolbox software)
Syntax

resample(data, P, Q)

resample(data, P, Q,order)
Description
InputdataName of time-domain iddata object. Can be input-output ortime-series data.

Data must be sampled at equal time intervals.
P, Q
Integers that specify the resampling factor, such that the new sampling interval is \(Q / P\) times the original one.
\((Q / P)>1\) results in decimation and \((Q / P)<1\) results in interpolation.
order
Order of the filters applied before interpolation and decimation.
Default: 10

\section*{Algorithm}

Examples
If you have installed the Signal Processing Toolbox software, resample calls the Signal Processing Toolbox resample function. The algorithm takes into account the intersample characteristics of the input signal, as described by data.InterSample.

In this example, you increase the sampling rate by a factor of 1.5 and compare the resampled and the original data signals.
```

plot(u)
ur = resample(u,3,2);
plot(u,ur)

```
See Also idresamp

\section*{Purpose \\ Syntax}

Compute and test model residuals (prediction errors)
```

resid(m,data)
resid(m,data,Type)
resid(m,data,Type,M)
e = resid(m,data);

```
data contains the output-input data as an iddata object. Both time-domain and frequency-domain data are supported. data can also be an idfrd object.
m is any idmodel or idnlmodel object.
In all cases the residuals \(e\) associated with the data and the model are computed. This is done as in the command pe with a default choice of init.

When called without output arguments, resid produces a plot. The plot can be one of three kinds depending on the argument Type:
- Type = 'Corr' (only available for time-domain data): The autocorrelation function of e and the cross correlation between \(e\) and the input(s) u are computed and displayed. The \(99 \%\) confidence intervals for these values are also computed and shown as a yellow region. The computation of the confidence region is done assuming \(e\) to be white and independent of \(u\). The functions are displayed up to lag M, which is 25 by default.
- Type = 'ir': The impulse response (up to lag M, which is 25 by default) from the input to the residuals is plotted with a \(99 \%\) confidence region around zero marked as a yellow area. Negative lags up to M/4 are also included to investigate feedback effects. The result is the same as impulse(e, 'sd',2.58,M).
- Type \(=\) ' \(f r\) ': The frequency response from the input to the residuals (based on a high-order FIR model) is shown as a Bode plot. A 99\% confidence region around zero is also marked as a yellow area.

The default for time-domain data is Type = 'Corr'. For frequency-domain data, the default is Type \(=\) ' fr '.

With an output argument, no plot is produced, and e is returned with the residuals (prediction errors) associated with the model and the data. It is an iddata object with the residuals as outputs and the input in data as inputs. That means that e can be directly used to build model error models, that is, models that describe the dynamics from the input to the residuals (which should be negligible if m is a good description of the system).

\section*{Examples}

\section*{References}

See Also

Here are some typical model validation commands.
```

e = resid(m,data);
plot(e)
compare(data,m);

```

To compute a model error model, that is, a model from the input to the residuals to see if any essential unmodeled dynamics are left, do the following:
```

e = resid(m,data);
me = arx(e,[10 10 0]);
bode(me,'sd',3,'fill')

```

Ljung (1999), Section 16.6.
```

compare
predict
sim
simsd

```

\section*{Purpose Add offsets or trends to data signals}

\section*{Syntax \\ data = retrend(data_d,T)}

Description

\section*{Examples}
data \(=\) retrend \((\) data_d, \(T)\) returns a data object data by adding the trend information \(T\) to each signal in data_d. data_d is a time-domain iddata object. \(T\) is an TrendInfo object.

Subtract means from input-output signals, estimate a linear model, and retrend the simulated output:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Remove the mean from the data
[data_d,T] = detrend(data,0)
% Estimate a linear ARX model
m = arx(data_d,[2 2 1])
% Simulate the model output
% with zero initial states
y_sim = sim(m,data_d(:,[],:));
% Retrend the simulated model output
y_tot = retrend(y_sim,T);

```

\section*{See Also}
getTrend
detrend
TrendInfo
"Handling Offsets and Trends in Data"

Purpose
Estimate recursively output-error models (IIR-filters)

\section*{Syntax}
thm \(=\operatorname{roe}(z, n n, a d m, a d g)\)
[thm,yhat, P, phi, psi] = roe(z,nn,adm,adg,th0, PO, phi0,psi0)

\section*{Description}

The parameters of the output-error model structure
\[
y(t)=\frac{B(q)}{F(q)} u(t-n k)+e(t)
\]
are estimated using a recursive prediction error method.
The input-output data are contained in \(z\), which is either an iddata object or a matrix \(z=[y \quad u]\) where \(y\) and \(u\) are column vectors. \(n n\) is given as
```

nn = [nb nf nk]

```
where nb and nf are the orders of the output-error model, and \(n \mathrm{nk}\) is the delay. Specifically,
\[
\begin{array}{ll}
n b: & B(q)=b_{1}+b_{2} q^{-1}+\ldots+b_{n b} q^{-n b+1} \\
n f: & F(q)=1+f_{1} q^{-1}+\ldots+f_{n f} q^{-n f}
\end{array}
\]

See "What Are Black-Box Polynomial Models?" for more information.
Only single-input, single-output models are handled by roe. Use rpem for the multiple-input case.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time \(k\); that is, they are based on the data in the rows up to and including row k in z .

Each row of thm contains the estimated parameters in the following order.
\[
\operatorname{thm}(k,:)=[b 1, \ldots, b n b, f 1, \ldots, f n f]
\]
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of tho is all zeros.

The arguments PO and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phio, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phi0 and psi0 is to use the outputs from a previous call to roe with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phi0 and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(n k=0\), shift the input sequence appropriately and use \(n k=1\).

\section*{Algorithm}

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

\section*{See Also}
```

nkshift
rarmax
rarx
rbj
rpem
rplr

```

Purpose

Syntax
thm = rpem(z, nn,adm,adg)
[thm,yhat,P,phi,psi] = rpem(z,nn,adm,adg,th0,Po,phiO,psi0)

\section*{Description}

The parameters of the general linear model structure
\[
A(q) y(t)=\frac{B_{1}(q)}{F_{1}(q)} u_{1}\left(t-n k_{1}\right)+\ldots+\frac{B_{n u}(q)}{F_{n u}(q)} u_{n u}\left(t-n k_{n u}\right)+\frac{C(q)}{D(q)} e(t)
\]
are estimated using a recursive prediction error method.
The input-output data is contained in z , which is either an iddata object or a matrix \(z=[y \quad u]\) where \(y\) and \(u\) are column vectors. (In the multiple-input case, \(u\) contains one column for each input.) \(n n\) is given as
```

nn = [na nb nc nd nf nk]

```
where na, nb, nc, nd, and nf are the orders of the model, and nk is the delay. For multiple-input systems, nb, nf, and nk are row vectors giving the orders and delays of each input. See "What Are Black-Box Polynomial Models?" for an exact definition of the orders.

The estimated parameters are returned in the matrix thm. The kth row of thm contains the parameters associated with time \(k\); that is, they are based on the data in the rows up to and including row \(k\) in \(z\). Each row of thm contains the estimated parameters in the following order.
```

thm(k,:) = [a1,a2,···,ana,b1,···,bnb,···
c1,···.,cnc,d1,···.,dnd,f1,···,fnf]

```

For multiple-input systems, the \(B\) part in the above expression is repeated for each input before the \(C\) part begins, and the \(F\) part is also repeated for each input. This is the same ordering as in m.par.
yhat is the predicted value of the output, according to the current model; that is, row \(k\) of yhat contains the predicted value of \(y(k)\) based on all past data.

The actual algorithm is selected with the two arguments adg and adm. These are described under rarx.

The input argument th0 contains the initial value of the parameters, a row vector consistent with the rows of thm. The default value of th0 is all zeros.

The arguments P0 and P are the initial and final values, respectively, of the scaled covariance matrix of the parameters. See rarx. The default value of PO is \(10^{4}\) times the unit matrix. The arguments phi0, psio, phi, and psi contain initial and final values of the data vector and the gradient vector, respectively. The sizes of these depend on the chosen model orders. The normal choice of phiO and psi0 is to use the outputs from a previous call to rpem with the same model orders. (This call could be a dummy call with default input arguments.) The default values of phiO and psi0 are all zeros.

Note that the function requires that the delay nk be larger than 0 . If you want \(n k=0\), shift the input sequence appropriately and use \(n k=1\).

\section*{Algorithm}

The general recursive prediction error algorithm (11.44) of Ljung (1999) is implemented. See also "Algorithms for Recursive Estimation".

For the special cases of ARX/AR models, and of single-input ARMAX/ARMA, Box-Jenkins, and output-error models, it is more efficient to use rarx, rarmax, rbj, and roe.

\section*{See Also \\ nkshift \\ rarmax \\ rarx \\ rbj}
rplr

\section*{Purpose}

\section*{Syntax}

\section*{Description}

\section*{References}

For more information about HARF and SHARF, see Chapter 11 in Ljung (1999).

\section*{See Also}
nkshift
rarmax
rarx
rbj
roe
rpem

Purpose Class representing saturation nonlinearity estimator for Hammerstein-Wiener models

\section*{Syntax s=saturation(LinearInterval, L)}

Description

\section*{Remarks}
saturation Properties

Use saturation to define a nonlinear function \(y=F(x)\), where \(F\) is a function of \(x\) and has the following characteristics:
\[
\begin{array}{ll}
a \leq x<b & F(x)=x \\
a>x & F(x)=a \\
b \leq x & F(x)=b
\end{array}
\]
\(y\) and \(x\) are scalars.
You can specify the property value as an argument in the constructor to specify the object.
After creating the object, you can use get or dot notation to access the object property values. For example:
\% List LinearInterval property value
get(s)
s.LinearInterval

You can also use the set function to set the value of particular properties. For example:
```

set(s, 'LinearInterval', [-1.5 1.5])

```

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline LinearInterval & \(\left.\begin{array}{l}1-b y-2 \text { row vector that specifies the initial interval of the } \\
\text { saturation. } \\
\text { Default=[NaN NaN]. } \\
\text { For example: } \\
\text { saturation('LinearInterval' , [}-1.51 .5\end{array}\right]\)) \\
\hline
\end{tabular}

\section*{Examples}

Use saturation to specify the saturation nonlinearity estimator in Hammerstein-Wiener models. For example:
```

m=nlhw(Data,Orders,saturation([-1 1]),[]);

```

The saturation nonlinearity is initialized at the interval [-1 1 1]. The interval values are adjusted to the estimation data by nlhw.

\section*{See Also}
nlhw

\section*{Purpose}

Segment data and estimate models for each segment

\section*{Syntax}
segm = segment(z, nn)
[segm, \(\mathrm{V}, \mathrm{thm}, \mathrm{R} 2 \mathrm{e}]=\operatorname{segment}(\mathrm{z}, \mathrm{nn}, \mathrm{R} 2, \mathrm{q}, \mathrm{R1}, \mathrm{M}, \mathrm{th} 0, \mathrm{PO}, \mathrm{ll}, \mathrm{mu})\)

\section*{Description}
segment builds models of AR, ARX, or ARMAX/ARMA type,
\[
A(q) y(t)=B(q) u(t-n k)+C(q) e(t)
\]
assuming that the model parameters are piecewise constant over time. It results in a model that has split the data record into segments over which the model remains constant. The function models signals and systems that might undergo abrupt changes.

The input-output data is contained in z , which is either an iddata object or a matrix \(z=[y u]\) where \(y\) and \(u\) are column vectors. If the system has several inputs, \(u\) has the corresponding number of columns.

The argument nn defines the model order. For the ARMAX model
```

nn = [na nb nc nk]

```
where na, nb, and nc are the orders of the corresponding polynomials. See "What Are Black-Box Polynomial Models?". Moreover, nk is the delay. If the model has several inputs, nb and nk are row vectors, giving the orders and delays for each input.

For an ARX model (nc = 0) enter
```

nn = [na nb nk]

```

For an ARMA model of a time series
```

z = y
nn = [na nc]

```
and for an AR model
```

nn = na

```

The output argument segm is a matrix, where the kth row contains the parameters corresponding to time \(k\). This is analogous to the output argument thm in rarx and rarmax. The output argument thm of segment contains the corresponding model parameters that have not yet been segmented. That is, they are not piecewise constant, and therefore correspond to the outputs of the functions rarmax and rarx. In fact, segment is an alternative to these two algorithms, and has a better capability to deal with time variations that might be abrupt.

The output argument V contains the sum of the squared prediction errors of the segmented model. It is a measure of how successful the segmentation has been.

The input argument R2 is the assumed variance of the innovations \(e(t)\) in the model. The default value of R2, R2 = [], is that it is estimated. Then the output argument R2e is a vector whose kth element contains the estimate of R2 at time \(k\).

The argument q is the probability that the model exhibits an abrupt change at any given time. The default value is 0.01 .

R1 is the assumed covariance matrix of the parameter jumps when they occur. The default value is the identity matrix with dimension equal to the number of estimated parameters.
\(M\) is the number of parallel models used in the algorithm (see below). Its default value is 5 .
th0 is the initial value of the parameters. Its default is zero. PO is the initial covariance matrix of the parameters. The default is 10 times the identity matrix.

11 is the guaranteed life of each of the models. That is, any created candidate model is not abolished until after at least 11 time steps. The default is \(l l=1\). Mu is a forgetting parameter that is used in the scheme that estimates R2. The default is 0.97.

The most critical parameter for you to choose is R2. It is usually more robust to have a reasonable guess of R2 than to estimate it. Typically, you need to try different values of R2 and evaluate the results. (See the
example below.) sqrt(R2) corresponds to a change in the value \(y(t)\) that is normal, giving no indication that the system or the input might have changed.

\section*{Algorithm}

Examples

The algorithm is based on M parallel models, each recursively estimated by an algorithm of Kalman filter type. Each model is updated independently, and its posterior probability is computed. The time-varying estimate thm is formed by weighting together the \(M\) different models with weights equal to their posterior probability. At each time step the model (among those that have lived at least 11 samples) that has the lowest posterior probability is abolished. A new model is started, assuming that the system parameters have changed, with probability q , a random jump from the most likely among the models. The covariance matrix of the parameter change is set to R1.

After all the data are examined, the surviving model with the highest posterior probability is tracked back and the time instances where it jumped are marked. This defines the different segments of the data. (If no models had been abolished in the algorithm, this would have been the maximum likelihood estimates of the jump instances.) The segmented model segm is then formed by smoothing the parameter estimate, assuming that the jump instances are correct. In other words, the last estimate over a segment is chosen to represent the whole segment.

Check how the algorithm segments a sinusoid into segments of constant levels. Then use a very simple model \(y(t)=b_{1} * 1\), where 1 is a fake input and \(b_{1}\) describes the piecewise constant level of the signal \(y(t)\) (which is simulated as a sinusoid).
```

y = sin([1:50]/3)';
thm = segment([y,ones(length(y),1)],[0 1 1],0.1);
plot([thm,y])

```

By trying various values of R2 (0.1 in the above example), more levels are created as R2 decreases.

\section*{Purpose}

Select model order for single-output ARX models
Syntax
nn = selstruc(v)
[nn, vmod] = selstruc(v,c)

Note Use selstruc for single-output systems only. selstruc supports both single-input and multiple-input systems.
selstruc is a function to help choose a model structure (order) from the information contained in the matrix \(v\) obtained as the output from arxstruc or ivstruc.

The default value of \(c\) is 'plot'. The plot shows the percentage of the output variance that is not explained by the model as a function of the number of parameters used. Each value shows the best fit for that number of parameters. By clicking in the plot you can examine which orders are of interest. When you click Select, the variable nn is exported to the workspace as the optimal model structure for your choice of number of parameters. Several choices can be made. \(c=\) 'aic ' gives no plots, but returns in nn the structure that minimizes
\[
\begin{aligned}
V_{\mathrm{mod}} & =\log \left(V\left(1+\frac{2 d}{N}\right)\right) \\
& =\log (V)+\frac{2 d}{N}, N \gg d
\end{aligned}
\]
where \(V\) is the loss function, \(d\) is the total number of parameters in the structure in question, and \(N\) is the number of data points used for the estimation. \(\log (V)+\frac{2 d}{N}\) is the Akaike's Information Criterion (AIC). See aic for more details.
\(\mathrm{c}=\) 'mdl' returns in \(n \mathrm{n}\) the structure that minimizes Rissanen's Minimum Description Length (MDL) criterion.

\section*{selstruc}
\[
V_{\mathrm{mod}}=V\left(1+\frac{d \log (N)}{N}\right)
\]

When c equals a numerical value, the structure that minimizes
\[
V_{\mathrm{mod}}=V\left(1+\frac{c d}{N}\right)
\]
is selected.
The output argument vmod has the same format as v , but it contains the logarithms of the accordingly modified criteria.

\section*{Examples}
```

V = arxstruc(data(1:200),data(201:400),...
struc(1:10,1:10,1:10))
nn = selstruc(V,0); %best fit to validation data
m = arx(data,nn)

```

\section*{Purpose Set properties of data and model objects}

\section*{Syntax}
```

set(m,'Property',Value)
set(m,'Property1',Value1,...'PropertyN',ValueN)
set(m,'Property')
set(m)

```

\section*{Description}
set is used to set or modify the properties of any of the objects in the toolbox (iddata, idmodel, idgrey, idarx, idpoly, idss, idnlarx, idnlgrey, idnlhw). See the corresponding reference pages for a complete list of properties.
set(m, 'Property', Value) assigns the value Value to the property of the object \(m\) specified by the string 'Property'. This string can be the full property name (for example, 'SSParameterization') or any unambiguous case-insensitive abbreviation (for example, 'ss').
set(m, 'Property1',Value1,...'PropertyN', ValueN) sets multiple properties with a single statement. In certain cases this might be necessary, since the model m must, for example, have state-space matrices of consistent dimensions after each set statement.
set (m, 'Property') displays admissible values for the property specified by 'Property'.
set (\(m\)) displays all assignable values of \(m\) and their admissible values.
The same result is also obtained by subassignment.
m.Property = Value

Purpose Set initial states of idnlgrey model object

\section*{Syntax setinit(model, property, values)}

Input
model
Name of the idnlgrey model object.
property
Name of the InitialStates model property field, such as 'Name',
'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.
values
Values of the specified property Property. values are an Nx-by-1 cell array of values, where \(N x\) is the number of states.

\section*{Description}
setinit(model, property, values) sets the values of the property field of the InitialStates model property. property can be 'Name', 'Unit', 'Value', 'Minimum', 'Maximum', and 'Fixed'.

See Also
getinit
getpar
idnlgrey
setpar
Purpose Set initial parameter values of idnlgrey model object
Syntax setpar(model, property, values)
Input modelName of the idnlgrey model object.
propertyName of the Parameters model property field, such as 'Name ','Unit', 'Value', 'Minimum', or 'Maximum'.Default: 'Value'.
valuesValues of the specified property Property. values are an Np-by-1cell array of values, where \(N p\) is the number of parameters.
Descriptionsetpar(model, property, values) sets the model parameter values inthe property field of the Parameters model property. property can be'Name', 'Unit', 'Value', 'Minimum', and 'Maximum'.
See Also getinit
getpar
idnlgrey
setinit

\section*{Purpose Set mnemonic parameter names for linear black-box model structures}

\section*{Syntax model = setpname (model)}

\section*{Description}
model is an idmodel object of idarx, idpoly, idproc, or idss type. The returned model has the 'PName' property set to a cell array of strings that correspond to the symbols used in this manual to describe the parameters.

For single-input idpoly models, the parameters are called 'a1', 'a2', ...,'fn'.

For multiple-input idpoly models, the \(b\) and \(f\) parameters have the output/input channel number in parentheses, as in 'b1 \((1,2)\) ', 'f3(1,2)', etc.
For idarx models, the parameter names are as in ' \(-\mathrm{A}(\mathrm{ky}, \mathrm{ku})\) ' for the negative value of the \(k y-k u\) entry of the matrix in \(A(q)\) polynomial of the multiple-output ARX equation, and similarly for the \(B\) parameters.

For idss models, the parameters are named for the matrix entries they represent, such as ' \(\mathrm{A}(4,5)^{\prime}\), ' \(\mathrm{K}(2,3)^{\prime}\) ', etc.

For idproc models, the parameter names are as described under idproc.

This function is particularly useful when certain parameters are to be fixed. See the property FixedParameter under Algorithm Properties.

\section*{Purpose}

Syntax

Description

Tips

\section*{Examples}

Specify format for B and F polynomials of multi-input polynomial model for backward compatibility
```

model= setPolyFormat(model, 'cell')
model= setPolyFormat(model, 'double')

```
model= setPolyFormat(model, 'cell') converts the B and F polynomials of a multi-input polynomial model, model, from double matrices to cell arrays. Each cell array has Nu-elements of double vectors, where Nu is the number of inputs.
model= setPolyFormat(model, 'double') allows you to continue using double matrices for the B and F polynomials. The model displays a message that it is in backward compatibility mode.
- The \(B\) and \(F\) polynomials, represented by b and f properties of idpoly object, are currently double matrices. For multi-input polynomial models, these polynomials will be cell arrays in a future version. Using setPolyFormat allows you to either change to using cell arrays immediately or continue using double arrays without errors in a future version.
- After using model = setPolyFormat(model, 'cell'), update your code to use cell array syntax for operations on the \(b\) and \(f\) properties.
- After using model = setPolyFormat (model, 'double'), you can continue using double matrix syntax for operations on the \(b\) and \(f\) properties.
- setPolyFormat has no effect on single-input idpoly models, where the b and f properties continue to be represented by double row vectors.

Convert the B and F polynomials of an estimated multi-input ARX model to cell arrays:

1 Estimate a 3-input ARX model.
```

% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [1 1 1 1]]);

```

The software computes the \(B\) and \(F\) polynomials and stores their values as double matrices in the b and f properties. Operations on the \(B\) and \(F\) polynomials, such as m. b, produce an incompatibility warning.

2 Convert the B and F polynomials to cell arrays.
```

m=setPolyFormat(m,'cell');

```

To verify that the \(B\) and \(F\) polynomials are cell arrays, type class(m.b), which returns:
ans =
cell
3 Extract pole and zero information from the model using cell array syntax.
```

Poles1 = roots(m.f{1});
Zeros1 = roots(m.b{1});

```

Continue using double matrices for \(B\) and \(F\) polynomials of an estimated multi-input ARX model:

1 Estimate a 3-input ARX model.
```

% Load estimation data.
load iddata8
% Estimate model.
m = arx(z8, [3 [2 2 1] [lllll]);

```

The software computes the \(B\) and \(F\) polynomials, and stores their values in double matrices in the b and f properties. Operations on the \(B\) and \(F\) polynomials, such as m. b, produce an incompatibility warning.

2 Designate the model to continue using double matrices for the \(B\) and \(F\) polynomials for backward compatibility.
```

m=setPolyFormat(m,'double')

```

The following message at the MATLAB prompt indicates that the model is backward compatible:
(model configured to operate in backward compatibility mode)
3 Extract pole and zero information from the model using matrix syntax.
```

Poles1 = roots(m.f(1,:))
Zeros1 = roots(m.b(1,:))

```

See Also idpoly | get | set
How To
- "Extracting Parameter Values from Linear Models"

Purpose Set matrix structure for idss model objects

\section*{Syntax setstruc(M,As,Bs,Cs,Ds.Ks,XOs) \\ setstruc (M,Mods) \\ Description \\ setstruc (M,As,Bs,Cs,Ds.Ks, XOs)}
is the same as
```

set(M,'As',As,'Bs',Bs,'Cs',Cs,'Ds',Ds,'Ks',Ks,'XOs',XOs)

```

Use empty matrices for structure matrices that should not be changed. You can omit trailing arguments.

In the alternative syntax, Mods is a structure with field names As, Bs, etc., with the corresponding values of the fields.

\section*{See Also}

\section*{Purpose}

\section*{Syntax}

Description

\section*{Remarks}

Class representing sigmoid network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models
```

s=sigmoidnet('NumberOfUnits',N)
s=sigmoidnet(Property1,Value1,...PropertyN,ValueN)

```
sigmoidnet is an object that stores the sigmoid network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
\(\mathrm{s}=\) sigmoidnet('NumberOfUnits', N) creates a sigmoid nonlinearity estimator object with \(N\) terms in the sigmoid expansion.
s=sigmoidnet(Property1, Value1, ...PropertyN,ValueN) creates a sigmoid nonlinearity estimator object specified by properties in "sigmoidnet Properties" on page 2-394.

Use evaluate \((s, x)\) to compute the value of the function defined by the sigmoidnet object s at x .

Use sigmoidnet to define a nonlinear function \(y=F(x)\), where \(y\) is scalar and \(x\) is an m-dimensional row vector. The sigmoid network function is based on the following expansion:
\[
\begin{aligned}
F(x)=(x-r) P L & +a_{1} f\left((x-r) Q b_{1}-c_{1}\right)+\ldots \\
& +a_{n} f\left((x-r) Q b_{n}-c_{n}\right)+d
\end{aligned}
\]
where \(f\) is the sigmoid function, given by the following equation:
\[
f(z)=\frac{1}{e^{-z}+1}
\]
\(P\) and \(Q\) are m-by-p and m-by-q projection matrices. The projection matrices \(P\) and \(Q\) are determined by principal component analysis of estimation data. Usually, \(\mathrm{p}=\mathrm{m}\). If the components of \(x\) in the estimation data are linearly dependent, then \(p<m\). The number of columns of \(Q\),

\section*{sigmoidnet}
q , corresponds to the number of components of x used in the sigmoid function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a Hammerstein-Wiener model, \(\mathrm{m}=\mathrm{q}=1\) and \(Q\) is a scalar.
\(r\) is a \(1-b y\)-m vector and represents the mean value of the regressor vector computed from estimation data.
\(d, a_{k}\), and \(c_{k}\) are scalars.
\(L\) is a p-by- 1 vector.
\(b_{k}\) are \(q-b y-1\) vectors.
sigmoidnet Properties

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(s)
% Get value of NumberOfUnits property
s.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
```

set(s, 'LinearTerm', 'on')

```

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nonlinearity units in the expansion. \\
Default=10. \\
For example: \\
sigmoidnet (H, 'NumberOfUnits' , 5)
\end{tabular} \\
\hline LinearTerm & \begin{tabular}{l}
Can have the following values: \\
- 'on '—Estimates the vector \(L\) in the expansion. \\
- 'off'-Fixes the vector \(L\) to zero. \\
For example: \\
sigmoidnet(H,'LinearTerm','on')
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
A structure containing the parameters in the nonlinear expansion, as follows: \\
- RegressorMean: 1-by-m vector containing the means of \(x\) in estimation data, \(r\). \\
- NonLinearSubspace: m-by-q matrix containing \(Q\). \\
- LinearSubspace: m-by-p matrix containing \(P\). \\
- LinearCoef: p-by-1 vector \(L\). \\
- Dilation: \(q-b y\)-n matrix containing the values b_k. \\
- Translation: 1-by-n vector containing the values c_k. \\
- OutputCoef: \(n-b y-1\) vector containing the values a_k. \\
- OutputOffset: scalar d. \\
Typically, the values of this structure are set by estimating a model with a sigmoidnet nonlinearity.
\end{tabular} \\
\hline
\end{tabular}

Algorithm

Examples Use sigmoidnet to specify the nonlinear estimator in nonlinear ARX and Hammerstein-Wiener models. For example:
m=nlarx(Data,Orders,sigmoidnet('num', 5));

\section*{See Also}
nlarx
nlhw

\section*{Purpose Simulate linear models with confidence interval}

Syntax
\(y=\operatorname{sim}(m, u)\)
\(y=\operatorname{sim}\left(m, u\right.\), ' \(^{\prime}\) oise')
[y, ysd] = sim(m,u,'InitialState',init)

\section*{Description}
m is any idmodel.
\(u\) is an iddata object, containing inputs only. (Any outputs are ignored). Both time-domain and frequency-domain signals are supported. The number of input channels in \(u\) must either be equal to the number of inputs of the model \(m\) or equal to the sum of the number of inputs and noise sources (number of outputs). In the latter case the last inputs in \(u\) are regarded as noise sources and a noise-corrupted simulation is obtained. The noise is scaled according to the property m . NoiseVariance in m . To obtain the right noise level according to the model, the noise inputs should be white noise with zero mean and unit covariance matrix. A simpler way of obtaining a noise-corrupted simulation with Gaussian noise is to add the argument ' noise '. If no noise sources are contained in u , a noise-free simulation is obtained. sim applies both to time-domain and frequency-domain iddata objects, but no standard deviations are obtained for frequency-domain signals.
sim returns \(y\), containing the simulated output, as an iddata object.
init gives access to the initial states:
- init = 'm' (default) uses the internally stored initial state of model m.
- init = 'z' uses zero initial state.
- init = x0, where \(x 0\) is a column vector of appropriate length, uses this value as the initial state. For multi-experiment inputs, \(x 0\) has as many columns as there are experiments to allow for different initial conditions. For a continuous-time model \(m, x 0\) is the initial state for this model. Any modifications of the initial state that sampling might require are automatically handled. If \(m\) has a non-zero InputDelay,
and you need to access the values of the inputs during this delay, you must first apply inpd \(2 \mathrm{nk}(\mathrm{m})\). If m is a continuous-time model, it must first be sampled before inpd2nk can be applied.

The second output argument ysd is the standard deviation of the simulated output. This is not available for frequency-domain data.
\(u\) can also be given as a matrix with the number of columns being either the number of inputs in \(m\) or the sum of the number of inputs and outputs. Then y and ysd are returned as matrices. Continuous-time models, however, require \(u\) to be given as iddata.

If \(m\) is a continuous-time model, it is first converted to discrete time with the sampling interval given by ue, taking into account the inter-sample behavior of the input (ue. InterSample).

\section*{Examples}

Simulate a given system m0 (for example, created by idpoly).
```

e = iddata([],randn(500,1));
u = iddata([],idinput(500,'prbs'));
y = sim(mO,[u e]);
% iddata object with output y and input u.
z = [y u];

```

The same result is obtained by
```

u = iddata([],idinput(500,'prbs'));
y = sim(m0,u,'noise');
z = [y u];

```
or
```

u = idinput(500,'prbs');
y = sim(m0,u,'noise');
z = iddata(y,u);

```

Validate a model by comparing a measured output y with one simulated using an estimated model m .
\[
\begin{aligned}
& \mathrm{yh}=\operatorname{sim}(\mathrm{m}, \mathrm{u}) ; \\
& \mathrm{plot}(\mathrm{y}, \mathrm{yh})
\end{aligned}
\]

\section*{See Also \\ compare \\ idmdlsim \\ pe \\ predict \\ simsd}

\section*{sim(idnlarx)}

\section*{Purpose Simulate nonlinear ARX model}
\begin{tabular}{|c|c|}
\hline Syntax & YS = sim(MODEL,U) \\
\hline & YS = sim(MODEL, U,'Noise') \\
\hline & YS \(=\) sim(MODEL, U,'InitialState',INIT) \\
\hline
\end{tabular}

\section*{Description}

Input

YS = sim(MODEL,U) simulates a dynamic system with an idnlarx model.

YS = sim(MODEL,U,'Noise') produces a noise corrupted simulation with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies the initial conditions for simulation using various options, such as numerical initial state vector or past I/O data.
To simulate the model with user-defined noise, set the input \(U=\) [UIN \(E]\), where UIN is the input signal and \(E\) is the noise signal. UIN and \(E\) must both be one of the following:
- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.
- MODEL: idnlarx model object.
- U: Input data for simulation, an iddata object (where only the input channels are used) or a matrix. For simulations with noisy data, \(U\) contains both input and noise channels.
- INIT: Initial condition specification. INIT can be one of the following:
- A real column vector XO , for the state vector corresponding to an appropriate number of output and input data samples prior to the simulation start time. To build an initial state vector from a given set of input-output data or to generate equilibrium states, see data2state(idnlarx), findstates(idnlarx) and
findop(idnlarx). For multi-experiment data, XO may be a matrix whose columns give different initial states for different experiments.
- 'z': (Default) Zero initial state, equivalent to a zero vector of appropriate size.
- iddata object containing output and input data samples prior to the simulation start time. If it contains more data samples than necessary, only the last samples are taken into account. This syntax is equivalent to sim(MODEL, U,'InitialState', data2state(MODEL, INIT)), where data2state(idnlarx) transforms the iddata object INIT to a state vector.

\section*{Output}

\section*{Examples Simulation of a SISO idnlarx model}

In this example you simulate a single-input single-output idnlarx model M around a known equilibrium point, with an input level of 1 and output level of 10 .

1 Load the sample data.
```

    load iddata2;
    ```

2 Estimate an idnlarx model from the data.
\[
\text { M = nlarx(z2, [2 } 2 \text { 1], 'tree'); }
\]

3 Estimate current states of model based on past data.

\section*{sim(idnlarx)}
```

x0 = data2state(M, struct('Input',1, 'Output', 10));

```

4 Simulate the model using the initial states returned by data2state.
```

sim(M, z2, 'init', x0);

```

\section*{Continuing from End of Previous Simulation}

In this example you continue the simulation of a model from the end of a previous simulation run.

1 Estimate the idnlarx model from data.
```

load iddata2
M = nlarx(z2, [2 2 1], 'tree'); % idnlarx model

```

2 Simulate the model using first half of input data of z2
```

u1 = z2(1:200,[]);
% Simulate starting from zero initial states
ys1 = sim(M, u1, 'init', 'z');

```

3 Start another simulation, using the same states of the model from when the first simulation ended. For the second simulation, you use the second half of the input data of \(z 2\).
```

u2 = z2(201:end, []);

```

4 In order to set the initial states for second simulation correctly, package input u1 and output ys 1 from the first simulation into one iddata object.
```

firstSimData = [ys1,u1];

```

5 Pass this data as initial conditions for the next simulation.
```

ys2 = sim(M, u2, 'init', firstSimData);

```

6 Verify the two simulations by comparing to a complete simulation using all the input data of z2.
```

uTotal = z2(:,[]); % extract the whole input data
ysTotal = sim(M, uTotal, 'init', 'z');
% Compare the values of ys1, ys2 and ysTotal.
% ys1 should be equal to first half of ysTotal.
% ys2 should be equal to the second half of ysTotal
%
% plot the three responses
plot(ys1,'b', ys2, 'g', ysTotal, 'k*')

```

MATLAB software responds with a plot showing the three responses, with ysTotal overlaying ys1 and ys2 to verify that they match.

\section*{Matching Model Response to Output Data}

In this example, you estimate initial states of model \(M\) such that the response best matches the output in data set \(z 2\).

1 Load the sample data and create data object z2.
\[
\begin{aligned}
& \text { load iddata2; } \\
& \text { z2 = z2(1:50); }
\end{aligned}
\]

2 Estimate idnlarx model from data.

\section*{sim(idnlarx)}
M = nlarx(z2,[4 3 2],'wave');

3 Estimate initial states of M to best fit z 2 . y in the simulated response.
```

x0 = findstates(M,z2,[],'sim');

```

4 Simulate the model.
```

ysim = sim(M, z2.u, 'init', x0)

```

5 Compare ysim with the output signal in z2:
```

time = z2.SamplingInstants;
plot(time, ysim, time, z2.y,'.')

```

\section*{Simulation Near Steady State with Known Input and Unknown Output}

In this example you start simulation of a model near steady state, where the input is known to be 1 , but the output is unknown.
- Load sample data and create data object z2.
```

load iddata2
z2 = z2(1:50);

```
- Estimate idnlarx model from data.
\[
\text { M = nlarx(z2, [} 4 \text { 3 } 3 \text { 2], 'wave'); }
\]
- Determine equilibrium state values for input 1 and the unknown target output.
```

xO = findop(M, 'steady', 1, NaN);

```
- Simulate the model using initial states \(x 0\).
```

sim(M, z2.u, 'init', x0)

```

See Also
```

predict(idnlarx)
findop(idnlarx)
data2state(idnlarx)
finstates(idnlarx)

```

\section*{sim(idnlgrey)}

\section*{Purpose}

Simulate nonlinear ODE model
Syntax
```

YS = sim(NLSYS,DATA)
YS = sim(NLSYS,DATA,'Noise');
YS = sim(NLSYS,DATA,XOINIT);
YS = sim(NLSYS,DATA,'Noise',XOINIT);
YS = sim(NLSYS,DATA,'Noise','InitialState',XOINIT);
[YS, YSD, XFINAL] = sim(NLSYS,DATA,'Noise','InitialState',
XOINIT);

```

\section*{Description}

YS = sim(NLSYS,DATA) simulates the output of an idnlgrey model.
YS = sim(NLSYS,DATA, 'Noise'); simulates the model with Gaussian noise added to YS.

YS = sim(NLSYS,DATA,XOINIT); simulates the model with the specified initial states.

YS = sim(NLSYS, DATA, 'Noise', XOINIT); simulates the model with the specified initial states and with Gaussian noise added.

YS = sim(NLSYS, DATA, 'Noise', 'InitialState', XOINIT); simulates the model with the specified initial states.
[YS, YSD, XFINAL] =
sim(NLSYS,DATA,'Noise','InitialState',XOINIT); performs simulation starting with the specified initial states and with Gaussian noise added, and returns the final states of the model after the simulation is completed.
To simulate the model with user-defined noise, set the input DATA \(=\) [UIN E], where UIN is the input signal and \(E\) is the noise signal. UIN and \(E\) must both be one of the following:
- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.

\section*{Input}
- NLSYS: idnlgrey model object.
- DATA: Input-noise data [U E]. If E is omitted and 'Noise' is not given as an input argument, then a noise-free simulation is obtained. If \(E\) is omitted and 'Noise' is given as an input argument, then Gaussian noise created by randn(size(YS)) *sqrtm(NLSYS.NoiseVariance) will be added to YS. If both E and 'Noise' are given, then E specifies the noise to add to YS. For time-continuous idnlgrey objects, DATA passed as a matrix will lead to that the data sample interval, Ts, is set to one.
- XOINIT: Initial states. Can have the following values:
- 'zero' : Zero initial state \(\mathrm{x}(0)\) with all states fixed (nlsys.InitialStates.Fixed is thus ignored).
- 'fixed' (default): Struct array (NLSYS. InitialState) determines the values of the model initial states and all states are fixed. (NLSYS. InitialStates.Fixed is ignored). Same as 'model'.
- vector/matrix: Column vector of initial state values. For multiple experiment DATA, XOINIT may be a matrix whose columns give different initial states for each experiment. All initial states are kept fixed (nlsys.InitialStates.Fixed is thus ignored).
- struct array : Nx-by-1 structure array with fields:
- Name: Name of the state (a string).
- Unit: Unit of the state (a string).
- Value: Value of the states (a finite real 1-by-Ne vector, where Ne is the number of experiments.)
- Minimum: Minimum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same minimum value).

\section*{sim(idnlgrey)}
- Maximum: Maximum values of the states (a real 1-by-Ne vector or a real scalar, in which case all initial states have the same maximum value).
- Fixed: True (or a 1-by-Ne vector of True values). Any false value is ignored.

\section*{Output}
- YS: Simulated output. If DATA is an iddata object, then YS will also be an iddata object. Otherwise, YS will be a matrix where the k:th output is found in the k:th column of YS. If DATA is a multiple-experiment iddata object, then YS will be a multiple experiment object as well.
- YSD: Empty vector ([].) In the future, it will contain the estimated standard deviation of the simulated output.
- XFINAL: Final states computed. In the single experiment case it is a column vector of length Nx. For multi-experiment data, XFINAL is an Nx -by-Ne matrix with the ith column specifying the initial state of experiment i.

Note If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

\section*{Examples}

In this example you simulate an idnlgrey model for a data set \(z\). This example uses the nlgr model created in idnlgreydemo2.

1 Load the data set and create an idnlgrey model.
load twotankdata;
2 Estimate the idnlgrey model.
\% Specify file. FileName = 'twotanks_c';
```

% Specify model orders [ny nu nx].
Order = [11 1 2];
% Specify initial parameters.
Parameters = {0.5; 0.0035; 0.019; ...
9.81; 0.25; 0.016};
% Specify initial states.
InitialStates = [0; 0.1];
Ts = 0;
nlgr = idnlgrey(FileName, Order, Parameters, ...
InitialStates, Ts, ...
'Name', 'Two tanks');

```

3 Create an iddata object \(z\) from data \(z\) (from twotankdata.mat).
```

z = iddata([], u, 0.2, 'Name', 'Two tanks');

```

4 Simulate the model using the input signal from the data \(z\).
```

sim(nlgr,z)

```

\section*{See Also}
findstates(idnlgrey)
pe
pem
predict(idnlgrey)

\section*{sim(idnlhw)}

Purpose Simulate Hammerstein-Wiener model
\begin{tabular}{|c|c|}
\hline Syntax & YS \(=\operatorname{sim}(\) MODEL, U\()\) \\
\hline & YS = sim(MODEL, U,'Noise') \\
\hline & YS \(=\) sim(MODEL, U,'InitialState', INIT \\
\hline
\end{tabular}

Description
YS \(=\operatorname{sim}(M O D E L, U)\) simulates the output of an idnlhw model.
YS = sim(MODEL, U,'Noise') simulates the model output with an additive Gaussian noise scaled according to the value of the NoiseVariance property of MODEL.

YS = sim(MODEL,U,'InitialState',INIT) specifies initial conditions for starting the simulation.

To simulate the model with user-defined noise, set the input \(U\) = [UIN \(E]\), where UIN is the input signal and \(E\) is the noise signal. UIN and \(E\) must both be one of the following:
- iddata objects: E stores the noise signals as inputs, where the number of inputs matches the number of model outputs.
- Matrices: E has as many columns as there are noise signals, corresponding to the number of model outputs.

Input
- MODEL: idnlhw model object.
- U: Input data for simulation, which is an iddata object (where only the input channels are used) or a matrix. For simulations with noisy data, \(U\) contains both input and noise channels.
- INIT: Initial condition for simulation. INIT has one of the following values:
- Vector of initial state values. To estimate an initial state vector from input-output data or to generate equilibrium states, see the findstates(idnlhw) and findop(idnlhw) reference pages. For multiple-experiment data, enter a matrix with the same number of columns as the number of experiments.
- 'z': (Default) Vector containing zeros and corresponding to a system starting from rest.

\section*{Output}
- YS: Simulated output, which is an iddata object when U is an iddata object, or a matrix otherwise.

> Note If sim is called without an output argument, MATLAB software displays the simulated output(s) in a plot window.

\section*{Examples}

\section*{Simulation Using Initial States to Best Fit Model Response to Measured Output}

In this example you simulate the model output using initial states that minimize the error between the simulated and the measured output. \(z 2\) is the measured data.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Wiener model.
M = nlhw(z2,[4 3 2],'wave','pwl');
3 Compute the initial states that best fit the model response to the measured output.
```

x0 = findstates(M,z2);

```

4 Simulate the model using the estimated initial states.
```

ysim = sim(M,z2.u,'init',x0)

```

5 Compare ysim to output signal in z2:
t = z2.samp;

\section*{sim(idnlhw)}
```

plot(t, ysim, t, z2.y)

```

\section*{Simulating a Hammerstein-Wiener Model at Steady-State with Known Input and Unknown Output}

In this example, you simulate a single-input single-output idnlhw model about a steady-state operating point, where the input level is known to be 1 and the output level is unknown.

1 Load the sample data.
load iddata2
2 Create a Hammerstein-Weiner model.
M = nlhw(z2,[4 3 2],'wave','pwl');

3 Compute steady-state operating point values corresponding to an input level of 1 and an unknown output level.
```

x0 = findop(M,'steady',1,NaN);

```

4 Simulate the model using the estimated initial states.
sim(M,z2.u, 'init', x0)

See Also
```

findop(idnlhw)
finstates(idnlhw)
predict(idnlhw)

```

\section*{Purpose}

Simulate models with uncertainty using Monte Carlo method

\section*{Syntax}
```

simsd(m,u)
simsd(m,u,N,'noise',Ky)
[y,ysd] = simsd(m,u)

```

\section*{Description}

\section*{Examples}
u is an iddata object containing the inputs. m is a model given as any idmodel object. N random models are created according to the covariance information given in \(m\). The responses of each of these models to the input \(u\) are computed and graphed in the same diagram. If the argument 'noise' is included, noise is added to the simulation in accordance with the noise model of \(m\) and its own uncertainty. Ky denotes the output numbers to be plotted. (The default is all).

The default value is \(\mathrm{N}=10\).
With output arguments
\[
[y, y s d]=\operatorname{simsd}(m, u)
\]

No plots are produced, but y is returned as a cell array with the simulated outputs, and ysd is the estimated standard deviation of \(y\), based on the \(N\) different simulations. If \(u\) is an iddata object, so are the contents of the cells of \(y\) and ysd; otherwise, they are returned as vectors/matrices. In the iddata case,
```

plot(y{:})

```
thus plots all the responses.
sim and simsd have similar syntaxes. Note that simsd computes the standard deviation by Monte Carlo simulation, while sim uses differential approximations (the Gauss approximation formula). They might give different results.

Plot the step response of the model \(m\) and evaluate how it varies in view of the model's uncertainty.
```

step1 = [zeros(5,1); ones(20,1)];

```

\section*{simsd(m,step1)}

\section*{See Also \\ compare \\ idmdlsim \\ pe \\ predict \\ sim}

\section*{Purpose Dimensions of data and model objects}
```

Syntax d = size(m)
[ny,nu,Npar,Nx] = size(model)
[N, ny, nu, Nexp] = size(data)
ny = size(data,2)
ny = size(data,'ny')
size(model)
size(idfrd_object)

```

\section*{Description}
size describes the dimensions of iddata, idmodel, idnlmodel, and idfrd objects.

\section*{iddata}

For iddata objects, the sizes returned are, in this order,
- \(N=\) the length of the data record. For multiple-experiment data, \(N\) is a row vector with as many entries as there are experiments.
- ny = the number of output channels.
- nu = the number of input channels.
- \(\mathrm{Ne}=\) the number of experiments.

To access a specific size output, use syntax similar to the following: size (data, \(k\)) for the \(k\) size (data, 'N'), size(data, 'ny').

When called with one output argument, d = size(data) returns
- \(d=[N\) ny nu] if the number of experiments is 1 .
- \(d=[\operatorname{sum}(N)\) ny nu Ne] if the number of experiments is \(\mathrm{Ne}>1\).
idmodel
For idmodel objects the sizes returned are, in this order,
- \(n y=\) the number of output channels.
- \(n u=\) the number of input channels.
- Npar = the length of the ParameterVector (number of estimated parameters).
- \(N x=\) the number of states for idss and idgrey models.

To access a specific size output, use syntax similar to the following: size(mod,2), size(mod, 'Npar').

When size is called with one output argument, \(d=s i z e(m o d), d\) is given by
```

[ny nu Npar]

```

\section*{idfrd}

For idfrd models, the sizes returned are, in this order,
- ny = the number of output channels.
- \(n u=\) the number of input channels.
- \(\mathrm{Nf}=\) the number of frequencies.
- Ns = the number of spectrum channels.

To access a specific size output, use syntax similar to the following: size(mod,2) or size(mod,'Nf').

When size is called with one output argument, \(d=\) size(fre), \(d\) is given by
[ny nu Nf Ns]
When size is called with no output arguments, in any of these cases, the information is displayed in the MATLAB Command Window.

\section*{idnlarx or idnlhw}

For idmodel objects the sizes returned are, in this order,
- ny = the number of output channels.
- \(n u=\) the number of input channels.

To access a specific size output, use one of the following:
```

NY = SIZE(NLSYS,1)
NU = SIZE(NLSYS,2)
NY = SIZE(NLSYS,'Ny')
NU = SIZE(NLSYS,'Nu')

```

When called with only one output argument, \(\mathrm{N}=\) SIZE(NLSYS) returns the vector \(\mathrm{N}=[\mathrm{NY} \mathrm{NU}]\).

When called with no output argument, the information is displayed in the MATLAB Command Window.

\section*{idnlgrey}

For idnlgrey objects the sizes returned are, in this order,
- \(\mathrm{Ny}=\) the number of output channels.
- \(\mathrm{Nu}=\) the number of input channels.
- \(N x=\) the number of states.
- \(N p=\) the number of parameters.
- \(N p o=\) the number of parameter variables (number of estimated parameters).
- \(N p f=\) the number of fixed parameters.
- \(\mathrm{Ne}=\) the number of experiments associated with the states.
\(N y, N u, N x, N p, N p o, N p f\) and \(N e\) are set to NaN if NLSYS is inconsistent.
To access a specific size output, use one of the following:
```

NY = SIZE(NLSYS, 1)
NU = SIZE(NLSYS, 2)
NX = SIZE(NLSYS, 3)
NP = SIZE(NLSYS, 4)
NPO = size(NLSYS, 5)

```

NPF = (NLSYS, 6)
\(N E=(N L S Y S, 7)\)
NY = SIZE(NLSYS, 'Ny')
NU = SIZE(NLSYS, 'Nu')
When called with only one output argument, \(\mathrm{N}=\) SIZE(NLSYS) returns the vector \(N=[N Y\) NU NP NX NPO NPF NE].

When called with no output argument, the information is displayed in the MATLAB Command Window.

\section*{Purpose}

Syntax
```

G = spa(data)
G = spa(data,winSize,freq)
G = spa(data,winSize,freq,MaxSize)
[G,phi,spectrum] = spa(data)

```

Description

\section*{Definitions}

\section*{Frequency Response Function}

Frequency response function describes the steady-state response of a system to sinusoidal inputs. For a linear system, a sinusoidal input of a specific frequency results in an output that is also a sinusoid with the same frequency, but with a different amplitude and phase. The frequency response function describes the amplitude change and phase shift as a function of frequency.

To better understand the frequency response function, consider the following description of a linear, dynamic system:
\[
y(t)=G(q) u(t)+v(t)
\]
where \(u(t)\) and \(y(t)\) are the input and output signals, respectively. \(G(q)\) is called the transfer function of the system-it captures the system dynamics that take the input to the output. The notation \(G(q) u(t)\) represents the following operation:
\[
G(q) u(t)=\sum_{k=1}^{\infty} g(k) u(t-k)
\]
\(q\) is the shift operator, defined by the following equation:
\[
G(q)=\sum_{k=1}^{\infty} g(k) q^{-k} \quad q^{-1} u(t)=u(t-1)
\]
\(G(q)\) is the frequency-response function, which is evaluated on the unit circle, \(G\left(q=e^{i w}\right)\).

Together, \(G\left(q=e^{i w}\right)\) and the output noise spectrum \(\hat{\Phi}_{v}(\omega)\) are the frequency-domain description of the system.

The frequency-response function estimated using the Blackman-Tukey approach is given by the following equation:
\[
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
\]

In this case, ^ represents approximate quantities. For a derivation of this equation, see the chapter on nonparametric time- and frequency-domain methods in System Identification: Theory for the User, Second Edition, by Lennart Ljung, Prentice Hall PTR, 1999.

\section*{Output Noise Spectrum}

The output noise spectrum (spectrum of \(v(t)\)) is given by the following equation:
\[
\hat{\Phi}_{v}(\omega)=\hat{\Phi}_{y}(\omega)-\frac{\left|\hat{\Phi}_{y u}(\omega)\right|^{2}}{\hat{\Phi}_{u}(\omega)}
\]

This equation for the noise spectrum is derived by assuming the linear relationship \(y(t)=G(q) u(t)+v(t)\), that \(u(t)\) is independent of \(v(t)\), and the following relationships between the spectra:
\[
\begin{aligned}
& \Phi_{y}(\omega)=\left|G\left(e^{i \omega}\right)\right|^{2} \Phi_{u}(\omega)+\Phi_{v}(\omega) \\
& \Phi_{y u}(\omega)=G\left(e^{i \omega}\right) \Phi_{u}(\omega)
\end{aligned}
\]
where the noise spectrum is given by the following equation:
\[
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
\]
\(\hat{\Phi}_{y u}(\omega)\) is the output-input cross-spectrum and \(\hat{\Phi}_{u}(\omega)\) is the input spectrum.

Alternatively, the disturbance \(v(t)\) can be described as filtered white noise:
\[
v(t)=H(q) e(t)
\]
where \(e(t)\) is the white noise with variance \(\lambda\) and the noise power spectrum is given by the following equation:
\[
\Phi_{v}(\omega)=\lambda\left|H\left(e^{i \omega}\right)\right|^{2}
\]

Estimate frequency response with fixed resolution at 128 equally spaced, logarithmic frequency values between 0 (excluded) and \(n\) :
```

g = spa(z); % z is an iddata object with Ts=1
bode(g)

```

Estimate frequency response with fixed resolution at logarithmically spaced frequencies:
```

% Define frequency vector
w = logspace(-2,pi,128);
% Compute frequency response
g= spa(z,[],w); % [] specifies the default lag window size
bode(g,'sd',3) % Bode plot of the transfer function
bode(g('noise'),'sd',3) % Noise spectrum
% Bode plots include confidence interval
% of 3 standard deviations

```

\section*{Algorithm}
spa applies the Blackman-Tukey spectral analysis method by following these steps:

1 Computes the covariances and cross-covariance from \(u(t)\) and \(y(t)\) :
\[
\begin{aligned}
& \hat{R}_{y}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) y(t) \\
& \hat{R}_{u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} u(t+\tau) u(t) \\
& \hat{R}_{y u}(\tau)=\frac{1}{N} \sum_{t=1}^{N} y(t+\tau) u(t)
\end{aligned}
\]

This portion of the algorithm uses the covf function.

2 Computes the Fourier transforms of the covariances and the cross-covariance:
\[
\begin{aligned}
& \hat{\Phi}_{y}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{u}(\tau) W_{M}(\tau) e^{-i \omega \tau} \\
& \hat{\Phi}_{y u}(\omega)=\sum_{\tau=-M}^{M} \hat{R}_{y u}(\tau) W_{M}(\tau) e^{-i \omega \tau}
\end{aligned}
\]
where \(W_{M}(\tau)\) is the Hann window with a width (lag size) of \(M\). You can specify M to control the frequency resolution of the estimate, which is approximately equal \(2 \Pi / \mathrm{Mrad} /\) sampling interval.

By default, this operation uses 128 equally spaced frequency values between 0 (excluded) and \(n\), where \(w=[1: 128] / 128 * \mathrm{pi} / T s\) and Ts is the sampling interval of that data set. The default lag size of the Hann window is \(M=\min (\) length (data) \(/ 10,30)\). For default frequencies, uses fast Fourier transforms (FFT)-which is more efficient than for user-defined frequencies.

Note M = Y is in Table 6.1 of Ljung (1999). Standard deviations are on pages 184 and 188 in Ljung (1999).

3 Compute the frequency-response function \(\hat{G}_{N}\left(e^{i \omega}\right)\) and the output noise spectrum \(\hat{\Phi}_{v}(\omega)\).
\[
\hat{G}_{N}\left(e^{i \omega}\right)=\frac{\hat{\Phi}_{y u}(\omega)}{\hat{\Phi}_{u}(\omega)}
\]
\[
\Phi_{v}(\omega) \equiv \sum_{\tau=-\infty}^{\infty} R_{v}(\tau) e^{-i w \tau}
\]
spectrum is the spectrum matrix for both the output and the input channels. That is, if \(z=\) [data.OutputData, data.InputData], spectrum contains as spectrum data the matrix-valued power spectrum of z .
\[
S=\sum_{m=-M}^{M} E z(t+m) z(t)^{\prime} W_{M}\left(T_{s}\right) \exp (-i \omega m)
\]
' is a complex-conjugate transpose.

\author{
References \\ See Also \\ etfe | freqresp | idfrd | spafdr \\ How To \\ - "Identifying Frequency-Response Models" \\ - "Spectrum Normalization"
}

\section*{Purpose}

\section*{Syntax}
g = spafdr(data)
g = spafdr(data,Resol,w)

\section*{Description} frequency-dependent resolution

Estimate frequency response and spectrum using spectral analysis with
spafdr estimates the idfrd object containing transfer function and the noise spectrum \(\Phi_{v}\) of the general linear model
\[
y(t)=G(q) u(t)+v(t)
\]
where \(\Phi_{v}(\omega)\) is the spectrum of \(v(t)\).
data contains the output-input data as an iddata object. The data can be complex valued, and either time or frequency domain. It can also be an idfrd object containing frequency-response data.
g is returned as an idfrd object (see idfrd) with the estimate of \(G\left(e^{i \omega}\right)\) at the frequencies \(\omega\) specified by row vector \(\mathrm{w} . \mathrm{g}\) also includes information about the spectrum estimate of \(\Phi_{v}(\omega)\) at the same frequencies. Both results are returned with estimated covariances, included in g . See idfrd. The normalization of the spectrum is the same as described under spa.

\section*{Frequencies}

The frequency variable \(w\) is either specified as a row vector of frequencies, or as a cell array \{wmin, wmax\}. In the latter case the covered frequencies will be 50 logarithmically spaced points from wmin to wmax. You can change the number of points to NP by entering \{wmin, wmax, NP\}.
Omitting w or entering it as an empty matrix gives the default value, which is 100 logarithmically spaced frequencies between the smallest and largest frequency in data. For time-domain data, this means from \(1 / \mathrm{N} * \mathrm{Ts}\) to \(\mathrm{pi}{ }^{*} \mathrm{Ts}\), where Ts is the sampling interval of data and \(N\) is the number of data.

\section*{Resolution}

The argument Resol defines the frequency resolution of the estimates. The resolution (measured in \(\mathrm{rad} / \mathrm{s}\)) is the size of the smallest detail in the frequency function and the spectrum that is resolved by the estimate. The resolution is a tradeoff between obtaining estimates with fine, reliable details, and suffering from spurious, random effects: The finer the resolution, the higher the variance in the estimate. Resol can be entered as a scalar (measured in rad/s), which defines the resolution over the whole frequency interval. It can also be entered as a row vector of the same length as \(w\). Then Resol \((k)\) is the local, frequency-dependent resolution around frequency \(w(k)\).

The default value of Resol, obtained by omitting it or entering it as the empty matrix, is Resol (k) = \(2(w(k+1)-w(k))\), adjusted upwards, so that a reasonable estimate is guaranteed. In all cases, the resolution is returned in the variable g.EstimationInfo.WindowSize.

\section*{Algorithm}

If the data is given in the time domain, it is first converted to the frequency domain. Then averages of \(Y(w) \operatorname{Conj}(U(w))\) and \(U(w) \operatorname{Conj}(U(w))\) are formed over the frequency ranges w, corresponding to the desired resolution around the frequency in question. The ratio of these averages is then formed for the frequency-function estimate, and corresponding expressions define the noise spectrum estimate.

\author{
See Also \\ ```
bode \\ etfe \\ ffplot \\ freqresp \\ idfrd \\ nyquist \\ spa
```

}

## Purpose

Convert linear models to Control System Toolbox LTI models

## Syntax

sys = ss(mod)
sys = ss(mod,'m')
mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.
sys is returned as an ss LTI model object. The noise input channels in mod are treated as follows: consider a model mod with both measured input channels $u$ ( $n u$ channels) and noise channels $e$ ( $n y$ channels) with covariance matrix $\Lambda$

$$
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
$$

Both measured input channels $u$ and normalized noise input channels $v$ in mod are input channels in sys. The noise input channels belong to the InputGroup 'Noise', while the others belong to the InputGroup 'Measured '. The names of the noise input channels are v@yname, where yname is the name of the corresponding output channel. This means that the LTI object realizes the transfer function [ $G H L$ ].

To transform only the measured input channels in sys, use
sys = ss(mod('m')) or sys = ss(mod,'m')

This gives a representation of $G$ only.
For a time series (no measured input channels, $n u=0$ ), the LTI representations in ss contains the transfer functions from the normalized noise sources $v$ to the outputs, that is, $H L$. If the model mod has both measured and noise inputs, sys $=s s(\bmod (' n '))$ gives a representation of the additive noise.

In addition, the normal subreferencing can be used.

```
sys = ss(mod(1,[3 4]))
```

If you want to describe [GH] or $H$ (unnormalized noise), from $e$ to $y$, first use

```
mod = noisecnv(mod)
```

to convert the noise channels $e$ to regular input channels. These channels are assigned the names e@yname.

## See Also

frd
tf
zpk

## Purpose

State-space matrices from parametric linear model

## Syntax

```
[A,B,C,D,K,XO] = ssdata(m)
[A,B,C,D,K,XO,dA,dB,dC,dD,dK,dXO] = ssdata(m)
```

$m$ is the model given as any idmodel object. A, B, C, D, K, and XO are the matrices in the state-space description

$$
\begin{aligned}
& \tilde{x}(t)=A x(t)+B u(t)+K e(t) \\
& x(0)=x 0 \\
& y(t)=C x(t)+D x(t)+e(t)
\end{aligned}
$$

where $\tilde{x}(t)$ is $\dot{x}(t)$ or $x(t+T s)$ depending on whether m is a continuous-time or discrete-time model.
$\mathrm{dA}, \mathrm{dB}, \mathrm{dC}, \mathrm{dD}, \mathrm{dK}$, and dXO are the standard deviations of the state-space matrices.

If the underlying model itself is a state-space model, the matrices correspond to the same basis. If the underlying model is an input-output model, an observer canonical form representation is obtained.

For a time-series model (no measured input channels, $u=[$ ]), $B$ and $D$ are returned as the empty matrices.

Subreferencing models in the usual way (see idmodel properties) will give the state-space representation of the chosen channels. Notice in particular that
[A,B,C,D] = ssdata(m('m'))
gives the response from the measured inputs. This is a model without a disturbance description. Moreover,

$$
[A, B, C, D, K]=\operatorname{ssdata}\left(m\left(n^{\prime}\right)\right)
$$

(' $n$ ' as in "noise") gives the disturbance description, that is, a time-series description of the additive noise with no measured inputs, so that $B=[]$ and $D=[]$.
To obtain state-space descriptions that treat all input channels, both $u$ and e, as measured inputs, first apply the conversion

```
 m = noisecnv(m)
```

```
m = noisecnv(m,'norm')
```

```
m = noisecnv(m,'norm')
```

or
where the latter case first normalizes $e$ to $v$, where $v$ has a unit covariance matrix. See the reference page for noisecnv.

## Algorithm

The computation of the standard deviations in the input-output case assumes that an $A$ polynomial is not used together with an $F$ or $D$ polynomial in the general polynomial equation (see "What Are Black-Box Polynomial Models?" in the User's Guide. For the computation of standard deviations in the case that the state-space parameters are complicated functions of the parameters, the Gauss approximation formula is used together with numerical derivatives. The step sizes for this differentiation are determined by nuderst.

## See Also <br> idmodel <br> idss <br> nuderst

```
Purpose Plot step response with confidence interval
Syntax
Description
step can be applied both to any idmodel or idnlmodel object and to iddata sets.
For a discrete-time idmodel m, the step response \(y\) and, when required, its estimated standard deviation ysd, are computed using sim. When called with output arguments, \(y\), \(y s d\), and the time vector \(t\) are returned. When step is called without output arguments, a plot of the step response is shown. If sd is given a value larger than zero, a confidence region around the response is drawn. It corresponds to the confidence of sd standard deviations. If the input argument list contains 'fill', this region is plotted as a filled area.
```


## Setting the Time Interval

The start time T1 and the end time T2 can be specified by Time = [T1 T2]. If T1 is not given, it is set to $-\mathrm{T} 2 / 4$. The negative time lags (the step is always assumed to occur at time 0 ) show possible feedback effects in the data when the step is estimated directly from data. If Time is not specified, a default value is used.

## Estimating the Step Response from the Data

For an iddata set data, step(data) estimates a high-order, noncausal FIR model after first having prefiltered the data so that the input is "as white as possible." The step response of this FIR model and, when asked for, its confidence region, are then plotted. Note that it might not be possible always to deliver the demanded time interval in
this case, because of lack of excitation in the data. A warning is then issued. When called with an output argument, step, in the iddata case, returns this FIR model, stored as an idarx model. The order of the prewhitening filter can be specified as na. The default value is na $=10$.

## Several Models/Data Sets

Any number and any mixture of models and data sets can be used as input arguments. The responses are plotted with each input/output channel (as defined by the models and data sets InputName and OutputName) as a separate plot. Colors, line styles, and marks can be defined by PlotStyle values, as in

```
step(m1,'b-*',m2,'y--',m3,'g')
```


## Noise Channels

he noise input channels in $m$ are treated as follows: Consider a model $m$ with both measured input channels $u$ ( $n u$ channels) and noise channels $e$ (ny channels) with covariance matrix $\Lambda$

$$
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
$$

where $L$ is a lower triangular matrix. Note that m.NoiseVariance $=\Lambda$. The model can also be described with a unit variance, using a normalized noise source $v$ :

$$
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
$$

- step(m) plots the step response of the transfer function $G$.
- $\operatorname{step}\left(\mathrm{m}\left(\mathrm{'}^{\mathrm{n}}\right.\right.$ ')) plots the step response of the transfer function $H$ ( $n y$ inputs and ny outputs). The input channels have names e@yname, where yname is the name of the corresponding output.
- If $m$ is a time series, that is, $n u=0$, step ( $m$ ) plots the step response of the transfer function $H$.
- step(noisecnv(m)) plots the step response of the transfer function [G H] ( $n u+n y$ inputs and $n y$ outputs). The noise input channels have names e@yname, where yname is the name of the corresponding output.
- step(noisecnv(m, 'norm')) plots the step response of the transfer function [G HL] (nu+ny inputs and ny outputs). The noise input channels have names v@yname, where yname is the name of the corresponding output.
Arguments
Examples


## See Also

cra
impulse
If step is called with a single idmodel m , the output argument y is a 3-D array of dimension Nt-by-ny-by-nu. Here Nt is the length of the time vector $t$, ny is the number of output channels, and nu is the number of input channels. Thus $\mathrm{y}(:, \mathrm{ky}, \mathrm{ku})$ is the response in the kyth output channel to a step in the kuth input channel. No plot is produced when output arguments are used.
ysd has the same dimensions as y and contains the standard deviations of $y$. This is normally computed using sim. However, when the model $m$ contains an estimated delay (dead time) as in certain process models, the standard deviation is estimated with Monte Carlo techniques, using simsd.
If step is called with an output argument and a single data set in the input arguments, the output is returned as an idarx model mod containing the high-order FIR model, and its uncertainty. By calling step with mod, the responses can be displayed and returned without your having to redo the estimation.

```
 % Estimate and plot the step response
 step(data,'sd',3)
 mod = step(data)
step(mod,'sd',3)
```

```
Purpose

\section*{Description}

\section*{Usage}

\section*{Examples}
```

Generate model-order combinations for single-output ARX model estimation

```
```

Syntax

```
Syntax
\(n n=\) struc (na,nb,nk)
\(n n=\) struc (na,nb,nk)
\(n n=\operatorname{struc}\left(n a, n b _1, \ldots, n b _n u, n k _1, \ldots, n k _n u\right)\)
```

```
\(n n=\operatorname{struc}\left(n a, n b _1, \ldots, n b _n u, n k _1, \ldots, n k _n u\right)\)
```

```
```

$n n=$ struc ( $n a, n b, n k$ ) generates model-order combinations for single-input ARX model estimation. na and nb are row vectors that specify range of model orders. $n k$ is a row vector that specifies range of model delays. $n n$ is a matrix that contains all combinations of the orders and delays.
$n n=$ struc (na,nb_1,...,nb_nu,nk_1,...,nk_nu) generates model-order combinations for ARX model with nu input channels.

- Use with arxstruc or ivstruc to compute loss functions for ARX models, one for each model order combination returned by struc.
Generate model-order combinations for single-input ARX model estimation:
\% na and nb vary between 1 and 2, nk varies between 4 and 5. NN = struc(1:2,1:2,4:5);

```

Generate model-order combinations, and estimate multi-input ARX model:
```

```
% Create estimation and validation data sets.
```

```
% Create estimation and validation data sets.
load co2data;
load co2data;
Ts = 0.5; % Sampling interval is 0.5 min
Ts = 0.5; % Sampling interval is 0.5 min
ze = iddata(Output_exp1,Input_exp1,Ts);
ze = iddata(Output_exp1,Input_exp1,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);
zv = iddata(Output_exp2,Input_exp2,Ts);
% Generate model-order combinations for na=2:4,
% Generate model-order combinations for na=2:4,
% nb=2:5 for the first input and 1 or 4 for the second input,
% nb=2:5 for the first input and 1 or 4 for the second input,
% nk=1:4 for the first input and 0 for the second input.
```

```
% nk=1:4 for the first input and 0 for the second input.
```

```

\(N N=\operatorname{struc}(2: 4,2: 5,[14], 1: 4,0) ;\)
\% Estimate an ARX model for each model order.
\(\mathrm{V}=\operatorname{arxstruc}(z e, z v, N N)\);
\% Select a model order.
order=selstruc (V,0);
\% Estimate an ARX model of selected order.
M=arx (ze,order) ;
See Also arxstruc | ivstruc | selstruc
Tutorials . "Estimating Model Orders Using an ARX Model Structure"
How To . "Preliminary Step - Estimating Model Orders and Input Delays"

Purpose

Syntax

Description

Convert linear models to transfer-function Control System Toolbox LTI models
sys \(=t f(\bmod)\)
sys \(=t f(m o d, ' m ')\)
mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or idmodel.
sys is returned as a transfer function tf LTI model object. The noise input channels in mod are treated as follows:

Consider a model mod with both measured input channels \(u\) (\(n u\) channels) and noise channels \(e\) (\(n y\) channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix mod. NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\).
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]

Both measured input channels \(u\) and normalized noise input channels \(v\) in mod are input channels in sys. The noise input channels belong to the InputGroup 'Noise', while the others belong to the InputGroup 'Measured '. The names of the noise input channels will be v@yname, where yname is the name of the corresponding output channel. This means that the LTI object realizes the transfer function [GHL].

To transform only the measured input channels in mod, use
```

sys = tf(mod('m')) or sys = tf(mod,'m')

```

This gives a representation of \(G\) only.

For a time series, (no measured input channels, \(n u=0\)), the LTI representation contains the transfer functions from the normalized noise sources \(v\) to the outputs, that is, \(H L\). If the model mod has both measured and noise inputs, sys \(=t f\left(\bmod \left(n^{\prime}\right)\right)\) gives a representation of the additive noise.
In addition, you can use normal subreferencing.
```

sys = tf(mod(1,[3 4]))

```

If you want to describe \([G H]\) or \(H\) (unnormalized noise), from \(e\) to \(y\), first use
```

mod = noisecnv(mod)

```
to convert the noise channels \(e\) to regular input channels. These channels are assigned the names e@yname.
See AlsofrdSS
zpk

Purpose Numerator and denominator of transfer function from linear model
```

Syntax
[num,den] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m)
[num,den,sdnum,sdden] = tfdata(m, 'v')

```

\section*{Description}
\(m\) is a model given as any idmodel object with ny output channels and nu input channels.
num is a cell array of dimension ny-by-nu. num \{ky, ku\} (note the curly braces) contains the numerator of the transfer function from input ku to output ky. This numerator is a row vector whose interpretation is described below.

Similarly, den is an ny-by-nu cell array of the denominators.
sdnum and sdden have the same formats as num and den. They contain the standard deviations of the numerator and denominator coefficients.

If m is a SISO model, adding an extra input argument ' v ' (for vector) will return num and den as vectors rather than cell arrays.

The formats of num and den are the same as those used by the Signal Processing Toolbox and Control System Toolbox products, both for continuous-time and discrete-time models.

The noise input channels in \(m\) are treated as follows: Consider a model \(m\) with both measured input channels \(u\) (\(n u\) channels) and noise channels \(e\) (ny channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that m.NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\) :
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]
- tfdata(m) returns the transfer function \(G\).
- tfdata(m('n')) returns the transfer function \(H\) (\(n y\) inputs and \(n y\) outputs).
- If \(m\) is a time series, that is, \(n u=0\), \(\mathrm{tfdata}(\mathrm{m})\) returns the transfer function \(H\).
- tfdata(noisecnv(m)) returns the transfer function \([G H](n u+n y\) inputs and ny outputs).
- tfdata(noisecnv(m, 'norm')) returns the transfer function [G HL] (\(n u+n y\) inputs and \(n y\) outputs).

\section*{Examples}

For a continuous-time model,
```

num = [lll
den = [llll

```
corresponds to the transfer function
\[
G(s)=\frac{s+2}{s^{2}+3 s}
\]

For a discrete-time model,
```

num = [lllll
den = [lllll

```
corresponds to the transfer function
\[
H(z)=\frac{2 z^{2}+4 z}{z^{3}+2 z^{2}+3 z+5}
\]
which is the same as
\[
H(q)=\frac{2 q^{-1}+4 q^{-2}}{1+2 q^{-1}+3 q^{-2}+5 q^{-3}}
\]

Note that for discrete-time models, idpoly and polydata have a different interpretation of the numerator vector, in case it does not have the same length as the denominator vector. To avoid confusion, fill out with zeros to make numerator and denominator vectors the same length. Do this with tfdata.

See Also
idpoly
noisecnv

Purpose
Return date and time when object was created or last modified
Syntax
timestamp(obj)
ts = timestamp(obj)
Description
obj is any idmodel, iddata, or idfrd object. timestamp returns or displays a string with information about when the object was created and last modified.

\section*{treepartition}
\begin{tabular}{|c|c|}
\hline Purpose & Class representing binary-tree nonlinearity estimator for nonlinear ARX models \\
\hline Syntax & ```
t=treepartition(Property1,Value1,...PropertyN,ValueN)
t=treepartition('NumberOfUnits',N)
``` \\
\hline Description & treepartition is an object that stores the binary-tree nonlinear estimator for estimating nonlinear ARX models. \\
\hline & You can use the constructor to create the nonlinearity object, as follows: t=treepartition(Property1, Value1,...PropertyN,ValueN) creates a binary tree nonlinearity estimator object specified by properties in "treepartition Properties" on page 2-443. The tree has the number of leaves equal to \(2^{\wedge}(J+1)-1\), where \(J\) is the number of nodes in the tree and set by the property NumberOfUnits. The default value of NumberOfUnits is computed automatically. \\
\hline
\end{tabular}

Note NumberOfUnits sets an upper limit on the actual number of tree nodes used by the estimator.
t=treepartition('NumberOfUnits', N) creates a binary tree nonlinearity estimator object with \(N\) terms in the binary tree expansion (the number of nodes in the tree). When you estimate a model containing t , the value of the NumberOfUnits property, N , in t is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} \mathrm{n}-1\) and less than or equal to N .

Use evaluate \((\mathrm{t}, \mathrm{x})\) to compute the value of the function defined by the treepartition object t at x . At this stage, an adaptive pruning algorithm is used to select an active partition \(\mathrm{D}_{\mathbf{\prime}} \mathrm{a}\left(=\mathrm{D}_{\mathbf{\prime}} \mathrm{a}(\mathrm{x})\right)\) on the branch of tree partitions that contain \(x\).

\section*{Remarks Use treepartition to define a nonlinear function \(y=F(x)\), where \(F\) is a piecewise-linear (affine) function of \(x, y\) is scalar, and \(x\) is a}

1 -by-m vector. \(F\) is a local linear mapping, where \(x\)-space partitioning is determined by a binary tree.

The binary-tree network function is based on the following function expansion:
\[
F(x)=x L+[1, x] C_{a}+d
\]
\(x\) belongs to the active partition \(D_{a} . D_{k}\) is a partition of \(x\)-space. \(L\) is \(1-b y-\mathrm{m}\) vector.
\(C_{k}\) is a \(1-b y-(\mathrm{m}+1)\) vector.
\(d\) is a scalar.
The active partition \(D_{a}\) is computed as an intersection of half-spaces by a binary tree, as follows:

1 Tree with \(N\) nodes and \(J\) levels is initialized.
2 Node at level \(J\) is a terminating leaf and a node at level \(j<J\) has two descendants at level \(\mathrm{j}+1\). The number of leaves in the tree is \(\mathrm{N}=\) \(2^{\wedge}(\mathrm{J}+1)-1\), which is determined by the NumberOfUnits property of the treepartition object.

3 Partition at node \(r\) is based on [1, x]*B_r > 0 or <= 0 (move to left or right descendant), where \(B \_r\) is chosen to improve the stability of least-square computation on the partitions at the descendant nodes.

4 Compute at each node \(r\) the coefficients C_r of best linear approximation of unknown regression function on D_r using penalized least-squares algorithm.

\section*{treepartition} Properties

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
\% List all property values

\section*{treepartition}
```

get(t)
% Get value of NumberOfUnits property
t.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
```

set(t, 'NumberOfUnits', 5)

```

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nodes in the tree. \\
Default='auto' selects the number of nodes from the data using the pruning algorithm. \\
When you estimate a model containing a treepartition nonlinearity, the value of NumberOfUnits is automatically changed to show the actual number of leaves used-which is the largest integer of the form \(2^{\wedge} n-1\) and less than or equal to \(N\) (the integer value of units you specify). \\
For example: \\
treepartition('NumberOfUnits', 5)
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Structure containing the following fields: \\
- RegressorMean: 1-by-m vector containing the means of \(x\) in estimation data, \(r\). \\
- RegressorMinMax: m-by-2 matrix containing the maximum and minimum estimation-data regressor values. \\
- OutputOffset: scalar d. \\
- LinearCoef: m-by-1 vector \(L\). \\
- SampleLength: Length of estimation data.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
- NoiseVariance: Estimated variance of the noise in estimation data. \\
- NonlinearParameters: A structure containing the following tree parameters: \\
- TreeLevelPntr: N-by-1 vector containing the levels j of each node. \\
- AncestorDescendantPntr: N-by-3 matrix, such that the entry ( \(k, 1\) ) is the ancestor of node \(k\), and entries \((k, 2)\) and \((k, 3)\) are the left and right descendants, respectively. \\
- LocalizingVectors: N - \(b y\) - \((\mathrm{m}+1)\) matrix, such that the rth row is B_r. \\
- LocalParVector: \(N\)-by- \((m+1)\) matrix, such that the kth row is C_k. \\
- LocalCovMatrix: N-by-((m+1)m/2) matrix such that the kth row is the covariance matrix of C_k. C_k is reshaped as a row vector.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest partition. \\
Default: 'auto', which computes the value from the data. \\
- Threshold: Threshold parameter used by the adaptive pruning algorithm. Smaller threshold value corresponds to a shorter branch that is terminated by the active partition D_a. Higher threshold value results in a longer branch. Default: 1.0. \\
- Stabilizer: Penalty parameter of the penalized least-squares algorithm used to compute local parameter
\end{tabular} \\
\hline
\end{tabular}

\section*{treepartition}
\begin{tabular}{l|l}
\hline Property Name & Description \\
\hline & \begin{tabular}{l} 
vectors C_k. Higher stabilizer value improves stability, but \\
may deteriorate the accuracy of the least-square estimate. \\
Default: 1e-6.
\end{tabular} \\
\hline
\end{tabular}

\section*{Algorithm}

Examples

When the idnlarx property Focus is 'Prediction', treepartition uses a noniterative technique for estimating parameters. Iterative refinements are not possible for models containing this nonlinearity estimator.

You cannot use treepartition when Focus is 'Simulation' because this nonlinearity estimators is not differentiable. Minimization of simulation error requires differentiable nonlinear functions.

Use treepartition to specify the nonlinear estimator in nonlinear ARX models. For example:
```

m=nlarx(Data,Orders,treepartition('num',5));

```

The following commands provide an example of using advanced treepartition options:
```

% Define the treepartition object
t=treepartition('num',100);
% Set the Threshold, which is a field
% in the Options structure
t.Options.Threshold=2;
% Estimate the nonlinear ARX model
m=nlarx(Data,Orders,t);

```

See Also nlarx

Construction For transient data, if you want to define a specific offset or trend to be

\section*{Purpose \\ Description}

Offset and linear trend slope values for detrending data

TrendInfo class represents offset and linear trend information of input and output data. Constructing the corresponding object lets you:
- Compute and store mean values or best-fit linear trends of input and output data signals.
- Define specific offsets and trends to be removed from input-output data.

By storing offset and trend information, you can apply it to multiple data sets.

After estimating a linear model from detrended data, you can simulate the model at original operation conditions by adding the saved trend to the simulated output using retrend. removed from this data, create the TrendInfo object using getTrend. For example:
```

T=getTrend(data)

```
where data is the iddata object from which you will be removing the offset or linear trend, and \(T\) is the TrendInfo object. You must then assign specific offset and slope values as properties of this object before passing the object as an argument to detrend.

For steady-state data, if you want to detrend the data and store the trend information, use the detrend command with the output argument for storing trend information.

\section*{Properties}

After creating the object, you can use get or dot notation to access the object property values.

\section*{TrendInfo}
\(\left.\begin{array}{l|l|l}\hline \begin{array}{l}\text { Property } \\ \text { Name }\end{array} & \text { Default } & \text { Description } \\ \hline \text { DataName } & \text { Empty string } & \begin{array}{l}\text { Name of the iddata object from which trend } \\ \text { information is derived (if any) }\end{array} \\ \hline \text { InputOffset } & \begin{array}{l}\text { zeros(1, nu), where } \\ \text { nu is the number of } \\ \text { inputs }\end{array} & \begin{array}{l}\text { - For transient data, the physical equilibrium } \\ \text { offset you specify for each input signal. } \\ \text { - For steady-state data, the mean of input values. } \\ \text { Computed automatically when detrending the } \\ \text { data. }\end{array} \\ \text { - If removing a linear trend from the input-output } \\ \text { data, the value of the line at to, where to is the } \\ \text { start time. }\end{array}\right\}\)
\begin{tabular}{l|l|l}
\hline \begin{tabular}{l} 
Property \\
Name
\end{tabular} & Default & Description \\
\hline OutputOffset & \begin{tabular}{l} 
zeros(1, ny), where \\
ny is the number of \\
outputs
\end{tabular} & \begin{tabular}{l} 
- For transient data, the physical equilibrium \\
offset you specify for each output signal \\
- For steady-state data, the mean of output values. \\
Computed automatically when detrending the \\
data. \\
- If removing a linear trend from the intput-output \\
data, the value of the line at to, where to is the \\
start time.
\end{tabular} \\
\hline OutputSlope & \begin{tabular}{l} 
zeros (1, ny \(),\) where \\
ny is the number of \\
outputs
\end{tabular} & \begin{tabular}{l} 
For multiple experiment data, this is a cell array \\
of size equal to the number of experiments in the \\
data set.
\end{tabular} \\
Slope of linear trend in output data, computed \\
automatically when using the detrend command \\
to remove the linear trend in the data. \\
For multiple experiment data, this is a cell array \\
of size equal to the number of experiments in the \\
data set.
\end{tabular}

\section*{Examples}

Construct the object that stores trend information as part of data detrending:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Detrend the mean from the data
% Store the mean as TrendInfo object T
[data_d,T] = detrend(data,0)
% View mean value removed from the data

```

\section*{TrendInfo}
```

get(T)

```

Construct the object that stores input and output offsets to be removed from transient data:
```

% Load SISO data containing vectors u2 and y2
load dryer2
% Create data object with sampling time of 0.08 sec
data=iddata(y2,u2,0.08)
% Plot data on a time plot - it has a nonzero mean
plot(data)
% Create a TrendInfo object for storing offsets and trends
T = getTrend(data)
% Assign offset values to the TrendInfo object
T.InputOffset=5;
T.OutputOffset=5;
% Subtract specific offset from the data
data_d = detrend(data,T)
% View mean value removed from the data
get(T)

```

\section*{See Also}
detrend
getTrend
retrend
"Handling Offsets and Trends in Data"

\section*{Purpose}

\section*{Syntax}

Description

\section*{Remarks}
unitgain
Properties

\section*{Examples For example, for a one-input and one-output model, to exclude the} output from being affected by a nonlinearity, use the following syntax:
m = nlhw(Data,Orders,'saturation','unitgain')

In this case, the input has a saturation nonlinearity.
If nonlinearities are absent in input or output channels, you can replace unitgain with an empty matrix. For example, to specify a Wiener

\section*{unitgain}
model with a sigmoid nonlinearity at the output and a unit gain at the input, use the following command:
```

m = nlhw(Data,Orders,[],'sigmoid');

```

\author{
See Also \\ deadzone \\ nlhw \\ saturation \\ sigmoidnet
}

\section*{Purpose \\ Plot model characteristics using Control System Toolbox LTI Viewer GUI}

\author{
Syntax \\ \section*{Description}
}
view(m)
view(m('n'))
view(m1,...,mN,Plottype)
view(m1,PlotStyle1, ...,mN,PlotStyleN)
\(m\) is the output-input data to be graphed, given as any idfrd or idmodel object. After appropriate model transformations, the Control System Toolbox LTI Viewer opens. This allows bode, nyquist, impulse, step, and zero/poles plots.

To compare several models m1, ..., mN, use view (m1, ..., mN). With PlotStyle, the color, line style, and marker of each model can be specified.
```

view(m1,'y:*',m2,'b')

```

Adding Plottype as a last argument specifies the type of plot in which view is initialized. Plottype is any of 'impulse','step', 'bode', 'nyquist','nichols','sigma', or 'pzmap '. It can also be given as a cell array containing any collection of these strings (up to 6) in which case a multiplot is shown.
view does not display confidence regions. For that, use bode, nyquist, impulse, step, and pzmap.

The noise input channels in \(m\) are treated as follows: Consider a model \(m\) with both measured input channels \(u\) ( \(n u\) channels) and noise channels \(e\) (ny channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L,
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that m.NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\) :
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]
- view(m) plots the characteristics of the transfer function \(G\).
- view(m('n')) plots the characteristics of the transfer function \(H L\) (ny inputs and ny outputs). The input channels have names v@yname, where yname is the name of the corresponding output.
- If \(m\) is a time series, that is, \(n u=0\), view (m) plots the characteristics of the transfer function \(H L\).
- view(noisecnv(m)) plots the characteristics of the transfer function [G H] ( \(n u+n y\) inputs and ny outputs). The noise input channels have names e@yname, where yname is the name of the corresponding output.
- view(noisecnv(m, 'norm')) plots the characteristics of the transfer function [G HL] ( \(n u+n y\) inputs and \(n y\) outputs). The noise input channels have names v@yname, where yname is the name of the corresponding output.
view does not give access to all of the features of ltiview. Use
```

ml = ss(m), ltiview(Plottype,ml,...)

```
to reach these options.
See Also \begin{tabular}{ll} 
bode \\
impulse \\
nyquist \\
pzmap \\
step
\end{tabular}

\section*{Purpose}

\section*{Syntax}

\section*{Description}

\section*{Remarks}

Class representing wavelet network nonlinearity estimator for nonlinear ARX and Hammerstein-Wiener models
```

s=wavenet('NumberOfUnits',N)
s=wavenet(Property1,Value1,...PropertyN,ValueN)

```
wavenet is an object that stores the wavelet network nonlinear estimator for estimating nonlinear ARX and Hammerstein-Wiener models.

You can use the constructor to create the nonlinearity object, as follows:
s=wavenet('NumberOfUnits',N) creates a wavelet nonlinearity estimator object with \(N\) terms in the wavelet expansion.
s=wavenet(Property1, Value1, ...PropertyN, ValueN) creates a wavelet nonlinearity estimator object specified by properties in "wavenet Properties" on page 2-456.

Use evaluate \((s, x)\) to compute the value of the function defined by the wavenet object \(s\) at \(x\).

Use wavenet to define a nonlinear function \(y=F(x)\), where \(y\) is scalar and \(x\) is an m-dimensional row vector. The wavelet network function is based on the following function expansion:
\[
\begin{aligned}
F(x)=(x-r) P L & +a_{s 1} f\left(\left(b_{s 1}(x-r)\right) Q-c_{s 1}\right)+\ldots \\
& +a_{s n} f\left(\left(b_{s n} s(x-r)\right) Q-c_{s n}\right) \\
& +a_{w 1} g\left(\left(b_{w 1}(x-r)\right) Q-c_{w 1}\right)+\ldots \\
& +a_{w n} w g\left(\left(b_{w n} w(x-r)\right) Q-c_{w n}\right)+d
\end{aligned}
\]
where \(f\) is a scaling function and \(g\) is the wavelet function. \(P\) and \(Q\) are \(\mathrm{m}-b y\) - p and m - \(b y\)-q projection matrices, respectively. The projection matrices \(P\) and \(Q\) are determined by principal component analysis of estimation data. Usually, \(\mathrm{p}=\mathrm{m}\). If the components of \(x\) in the estimation data are linearly dependent, then \(p<m\). The number of columns of \(Q\), \(q\),
corresponds to the number of components of \(x\) used in the scaling and wavelet function.

When used in a nonlinear ARX model, q is equal to the size of the NonlinearRegressors property of the idnlarx object. When used in a Hammerstein-Wiener model, \(\mathrm{m}=\mathrm{q}=1\) and \(Q\) is a scalar.
\(r\) is a \(1-b y\)-m vector and represents the mean value of the regressor vector computed from estimation data.
\(d, a_{s}, b_{s}, a_{w}\), and \(b_{w}\) are scalars. Parameters with the \(s\) subscript are scaling parameters, and parameters with the \(w\) subscript are wavelet parameters.
\(L\) is a \(p-b y-1\) vector.
\(c_{s}\) and \(c_{w}\) are 1-by-q vectors.
The scaling function \(f\) and the wavelet function \(g\) are both radial functions, as follows:
\[
\begin{aligned}
& f(x)=e^{-0.5 x^{\prime} x} \\
& g(x)=\left(\operatorname{dim}(x)-x^{\prime} x\right) e^{-0.5 x^{\prime} x}
\end{aligned}
\]
wavenet Properties

You can include property-value pairs in the constructor to specify the object.

After creating the object, you can use get or dot notation to access the object property values. For example:
```

% List all property values
get(w)
% Get value of NumberOfUnits property
w.NumberOfUnits

```

You can also use the set function to set the value of particular properties. For example:
```

h set(w, 'LinearTerm', 'on')

```

The first argument to set must be the name of a MATLAB variable.
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline NumberOfUnits & \begin{tabular}{l}
Integer specifies the number of nonlinearity units in the expansion. \\
Default='auto ' . \\
For example: \\
wavenet('NumberOfUnits',5)
\end{tabular} \\
\hline LinearTerm & \begin{tabular}{l}
Can have the following values: \\
- 'on' - (Default) Estimates the vector \(L\) in the expansion. \\
- 'off' - Fixes the vector \(L\) to zero and omits the term \((x-r) P L\). \\
For example: \\
wavenet(H,'LinearTerm', 'on')
\end{tabular} \\
\hline Parameters & \begin{tabular}{l}
Structure containing the parameters in the nonlinear expansion, as follows: \\
- Regressormean: 1-by-m vector containing the means of \(x\) in estimation data, \(r\). \\
- NonLinearSubspace: m-by-q matrix containing \(Q\). \\
- LinearSubspace: m-by-p matrix containing \(P\). \\
- LinearCoef: p-by-1 vector \(L\). \\
- ScalingDilation: ns-by-1 matrix containing the values bs_k. \\
- WaveletDilation: nw-by-1 matrix containing the values bw_k.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Property Name & Description \\
\hline & \begin{tabular}{l}
- ScalingTranslation: ns-by-q matrix containing the values cs_k. \\
- WaveletTranslation: nw-by-q matrix containing the values cw_k. \\
- ScalingCoef: ns-by-1 vector containing the values as_k. \\
- WaveletCoef: nw-by-1 vector containing the values aw_k. \\
- OutputOffset: scalar d.
\end{tabular} \\
\hline Options & \begin{tabular}{l}
Structure containing the following fields that affect the initial model: \\
- FinestCell: Integer or string specifying the minimum number of data points in the smallest cell. A cell is the area covered by the significantly nonzero portion of a wavelet. Default: 'auto', which computes the value from the data. \\
- MinCells: Integer specifying the minimum number of cells in the partition. Default: 16. \\
- MaxCells: Integer specifying the maximum number of cells in the partition. Default: 128. \\
- MaxLevels: Integer specifying the maximum number of wavelet levels. Default: 10. \\
- DilationStep: Real scalar specifying the dilation step size. Default: 2. \\
- TranslationStep: Real scalar specifying the translation step size. Default: 1.
\end{tabular} \\
\hline
\end{tabular}

When the idnlarx property Focus is 'Prediction', wavenet uses a fast, noniterative technique for estimating parameters. Successive refinements after the first estimation use an iterative algorithm.

When the idnlarx property Focus='Simulation', wavenet uses an iterative technique for estimating parameters.

To always use noniterative or iterative algorithm, specify the IterWavenet algorithm property of the idnlarx class.

\section*{Examples Use wavenet to specify the nonlinear estimator in nonlinear ARX and Hammerstein-Wiener models. For example:}
```

m=nlarx(Data,Orders,wavenet);

```

\section*{See Also \\ nlarx \\ nlhw}

Purpose
Convert linear model to Control System Toolbox state-space LTI models

\section*{Syntax}

\section*{Description}
sys = zpk(mod)
sys = zpk(mod,'m')
mod is any idmodel object: idgrey, idarx, idpoly, idproc, idss, or
idmodel.
sys is returned as a zpk LTI model object. The noise input channels in mod are treated as follows: consider a model mod with both measured input channels \(u\) ( \(n u\) channels) and noise channels \(e\) ( \(n y\) channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that mod.NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\).
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]

Both measured input channels \(u\) and normalized noise input channels \(v\) in mod are input channels in sys. The noise input channels belong to the InputGroup 'Noise', while the others belong to the InputGroup 'Measured'. The names of the noise input channels are given by v@yname, where yname is the name of the corresponding output channel. This means that the LTI object realizes the transfer function [G HL].
To transform only the measured input channels in sys, use
```

sys = zpk(mod('m')) or sys = zpk(mod,'m')

```

This gives a representation of \(G\) only.
For a time series, (no measured input channels, \(n u=0\) ), the LTI representation contains the transfer functions from the normalized
noise sources \(v\) to the outputs, that is, \(H L\). If the model mod has both measured and noise inputs, sys \(=\operatorname{zpk}\left(\bmod \left({ }^{\prime} n^{\prime}\right)\right)\) gives a representation of the additive noise.

In addition, the normal subreferencing can be used.
```

sys = zpk(mod(1,[3 4]))

```

If you want to describe \([G H]\) or \(H\) (unnormalized noise), from \(e\) to \(y\), first use
```

mod = noisecnv(mod)

```
to convert the noise channels \(e\) to regular input channels. These channels are assigned the names e@yname.

\section*{See Also}
frd
ss
tf
\begin{tabular}{ll} 
Purpose & Zeros, poles, and gains of transfer function from linear model \\
Syntax & \\
& {\([z, p, k]=z p k d a t a(m)\)} \\
& {\([z, p, k, d z, d p, d k]=z p k d a t a(m)\)} \\
& {\([z, p, k, d z, d p, d k]=z p k d a t a\left(m, v^{\prime}\right)\)}
\end{tabular}

\section*{Description}
m is a model given as any idmodel object with ny output channels and nu input channels.
\(z\) is a cell array of dimension ny-by-nu. z\{ky,ku\} (note the curly braces) contains the zeros of the transfer function from input ku to output ky. This is a column vector of possibly complex numbers.

Similarly, \(p\) is an ny-by-nu cell array containing the poles.
k is a ny-by-nu matrix whose ky-ku entry is the transfer function gain of the transfer function from input ku to output ky. Note that the transfer function gain is the value of the leading coefficient of the numerator when the leading coefficient of the denominator is normalized to 1 . It thus differs from the static gain. The static gain can be retrieved as Ks \(=\) freqresp (m,0).
dz contains the covariance matrices of the zeros in the following way: \(d z\) is a ny-by-nu cell array. \(d z\{k y, k u\}\) contains the covariance information about the zeros of the transfer function from ku to ky. It is a 3-D array of dimension 2 -by- 2 -by- Nz , where Nz is the number of zeros. \(\mathrm{dz}\{\mathrm{ky}, \mathrm{ku}\}(\mathrm{s},:, \mathrm{kz})\) is the covariance matrix of the zero \(\mathrm{z}\{\mathrm{ky}, \mathrm{ku}\}(\mathrm{kz})\), so that the 1-1 element is the variance of the real part, the 2-2 element is the variance of the imaginary part, and the 1-2 and 2-1 elements contain the covariance between the real and imaginary parts.
dp contains the covariance matrices of the poles in the same way.
dk is a matrix containing the variances of the elements of k .
If \(m\) is a SISO model, adding an extra input argument ' \(v\) ' (for vector) returns \(z\) and \(p\) as vectors rather than cell arrays.
Note that the zeros and the poles are associated with the different channel combinations. To obtain the so-called transmission zeros, use tzero.

The noise input channels in m are treated as follows: Consider a model m with both measured input channels \(u\) ( \(n u\) channels) and noise channels \(e\) ( \(n y\) channels) with covariance matrix \(\Lambda\)
\[
\begin{aligned}
& y=G u+H e \\
& \operatorname{cov}(e)=\Lambda=L L
\end{aligned}
\]
where \(L\) is a lower triangular matrix. Note that mod.NoiseVariance \(=\Lambda\). The model can also be described with a unit variance, using a normalized noise source \(v\).
\[
\begin{aligned}
& y=G u+H L v \\
& \operatorname{cov}(v)=I
\end{aligned}
\]

Then,
- zpkdata(m) returns the zeros and poles of \(G\).
- zpkdata(m('n')) returns the zeros and poles of \(H\) ( \(n y\) inputs and ny outputs).
- If \(m\) is a time series, that is, \(n u=0\), zpkdata( m ) returns the zeros and poles of \(H\).
- zpkdata (noisecnv (m)) returns the zeros and poles of the transfer function \([G H](n u+n y\) inputs and \(n y\) outputs).
- zpkdata(noisecnv(m,'norm')) returns the zeros and poles of the transfer function [GHL] (nu+ny inputs and ny outputs).

The procedure handles both models in continuous and discrete time.
Note that you cannot rely on information about zeros and poles at the origin and at infinity for discrete-time models. (This is a somewhat confusing issue anyway.)

\section*{Algorithm}

The poles and zeros are computed using ss2zp. The covariance information is computed using the Gauss approximation formula, using the parameter covariance matrix contained in \(m\). When the transfer
function depends on the parameters, numerical differentiation is applied. The step sizes for the differentiation are determined in the nuderstcommand.

\section*{Block Reference}

\author{
Data Import and Processing (p. 3-2) Blocks for transferring data between System Identification Toolbox and Simulink \({ }^{\circledR}\) software \\ Linear Model Identification (p. 3-3) Blocks for estimating linear models during simulation in Simulink software \\ Simulation and Prediction (p. 3-4) Blocks for simulating and predicting linear and nonlinear model output in Simulink software
}

\section*{Data Import and Processing}

\author{
IDDATA Sink \\ IDDATA Source
}

Export iddata object to MATLAB workspace

Import iddata object from MATLAB workspace

\section*{Linear Model Identification}
\begin{tabular}{ll} 
AR Estimator & \begin{tabular}{l} 
Estimate parameters of AR model \\
from scalar time series in Simulink \\
software returning idpoly object
\end{tabular} \\
ARMAX Estimator & \begin{tabular}{l} 
Estimate parameters of ARMAX \\
model from SISO data in Simulink \\
software returning idpoly object
\end{tabular} \\
ARX Estimator & \begin{tabular}{l} 
Estimate parameters of ARX model \\
from SISO data in Simulink software \\
returning idpoly object
\end{tabular} \\
BJ Estimator & \begin{tabular}{l} 
Estimate parameters of Box-Jenkins \\
model from SISO data in Simulink
\end{tabular} \\
OE Estimator & \begin{tabular}{l} 
software returning idpoly object
\end{tabular} \\
& \begin{tabular}{l} 
Estimate parameters of \\
Output-Error model from SISO \\
data in Simulink software returning
\end{tabular} \\
idpoly object
\end{tabular}

\section*{Simulation and Prediction}

\author{
IDMODEL Model \\ IDNLARX Model \\ IDNLGREY Model \\ IDNLHW Model
}

Simulate idmodel object in Simulink software

Simulate nonlinear ARX model in Simulink software

Simulate nonlinear grey-box model in Simulink software

Simulate Hammerstein-Wiener model in Simulink software

Blocks - Alphabetical List

\section*{AR Estimator}

\section*{Purpose}

Library
Description

AutoRegressive model estimator

\section*{Model Definition}

Estimate parameters of AR model from scalar time series in Simulink software returning idpoly object

System Identification Toolbox
The AR Estimator block estimates the parameters of an AR model for a scalar time series and returns the model as an idpoly object. A time series is time-domain data consisting of one or more outputs \(y(t)\) and no corresponding measured input.

For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The AR model is defined, as follows:
\[
y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)=e(t)
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}\) are the parameters to be estimated from the data.
- \(n_{a}\) is the number of poles of the system.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.
- \(e(t)\) is white-noise disturbance.

\section*{AR Estimator}

The AR model can be written compactly for a single output \(y(t)\) using the following notation:
\[
A(q) y(t)=e(t)
\]
where \(A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}}\) and \(q^{-1}\) is the backward shift operator defined by \(q^{-1} u(t)=u(t-1)\).

The following block diagram shows the AR model structure.


Time-series signal.

The AR Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation. The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{AR Estimator}

\section*{Dialog Box}


\section*{Orders of model [na]}

Integer \(n_{a}\) corresponds to the number of \(a\) parameters (poles) in the AR model.

\section*{How often to update model (samples)}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

\section*{AR Estimator}

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.

Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Prediction horizon}

Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples}

This example shows how you can use the AR Estimator block in a Simulink model.

1 Generate sample input and output data.
```

y = sin([1:300]') + 0.5*randn(300,1);
y = iddata(y);

```

2 Create a new Simulink model, as follows:

\section*{AR Estimator}
- Add the IDDATA Source block and specify y in the Iddata object field of the IDDATA Source block parameter dialog box.
- Add the AR Estimator block to the model and accept default block parameter values.
- Connect the Output port of the IDDATA Source block to the y port of the AR Estimator block.


3 Run the estimation.
The estimated models appear in the MATLAB Command Window every 25 samples.

\section*{See Also Related Commands}
ar
idpoly

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Time Series Identification"
}

\section*{ARMAX Estimator}

\section*{Purpose}

\section*{Library}

Description

Estimate parameters of ARMAX model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The ARMAX Estimator block estimates the parameters of a single-input and single-output ARMAX model and returns the model as an idpoly object.

For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

\section*{Model Definition}

The ARMAX model is defined, as follows:
\[
\begin{aligned}
& y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)= \\
& b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{b}\right)+e(t)+c_{1} e(t-1)+\cdots+c_{n_{c}} e\left(t-n_{c}\right)
\end{aligned}
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}, b_{1} \cdots b_{n}\), and \(c_{1} \cdots c_{n}\) are the parameters to be estimated.
- \(n_{a}\) is the number of poles of the system.
- \(n_{b}-1\) is the number of zeros of the system.
- \(n_{c}\) is the number of previous error terms on which the current output depends.
- \(n_{k}\) is the number of input samples that occur before the inputs affecting the current output.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.
- \(u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)\) are the previous inputs on which the current output depends.
- \(e(t), e(t-1), \cdots e\left(t-n_{c}\right)\) are the white-noise disturbance values on which the current output depends.

The ARMAX model can also be written in a compact way using the following notation:
\[
A(q) y(t)=B(q) u(t)+C(q) e(t)
\]
where
\[
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& C(q)=1+c_{1} q^{-1}+\cdots a_{n_{c}} q^{-n_{c}}
\end{aligned}
\]
and \(q^{-1}\) is the backward shift operator, defined by \(q^{-1} u(t)=u(t-1)\). The following block diagram shows the ARMAX model structure.

\section*{ARMAX Estimator}


Input

Output

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.

First input: Input signal.
Second input: Output signal.
The ARMAX Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{ARMAX Estimator}

\section*{Dialog \\ Box}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|l|}{戒 Sink Block Parameters: AutoRegressive Moving Average with ext... \(\underline{\underline{x}}\)} & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
ARMAX (mask) (link) \\
ARMAX model estimator. \\
Hook input 1 to system input. \\
Hook input 2 to system output. \\
Model Name: Enter workspace variable name for resulting models. Leave empty for printout on screen. \\
Choose if presented model plots should be simulation or prediction.
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Parameters \\
Orders of model [na nb ne nk]
\end{tabular}}} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{[2221]} \\
\hline \multicolumn{5}{|l|}{Calculate after how many points:} \\
\hline \multicolumn{5}{|l|}{25} \\
\hline \multicolumn{5}{|l|}{Sample time:} \\
\hline \multicolumn{5}{|l|}{0.05} \\
\hline \multicolumn{5}{|l|}{Length of Data Window} \\
\hline \multicolumn{5}{|l|}{200} \\
\hline \multicolumn{5}{|l|}{Model Name} \\
\hline \multicolumn{4}{|l|}{Simulation/Prediction)Simulation \(\quad \square\)} & \\
\hline OK & Cancel & Help & Apply & \\
\hline
\end{tabular}

\section*{Orders of model [na nb nc nk]}

Integers \(n_{a}, n_{b}, n_{c}\), and \(n_{k}\) specify the number of \(A, B\), and \(C\) model parameters and \(n_{k}\) is input-output delay, respectively.

\section*{Calculate after how many points}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

\section*{ARMAX Estimator}

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.

Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples This example shows how you can use the ARMAX Estimator block in a Simulink model.}

1 Generate sample input and output data.
```

u = sin([1:300]') + 0.6*(rand(300,1)-0.5);

```

\section*{ARMAX Estimator}
```

y = cos(u) + 0.1*rand(300,1);
IODATA = iddata(y,u,1);

```

2 Create a new Simulink model, as follows.
Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.

Add the ARMAX Estimator block to the model and set the model orders to [ \(\left.\begin{array}{llll}4 & 4 & 4 & 0\end{array}\right]\) and set the sample time to 1 .

Connect the Input and Output ports of the IDDATA Source block to the \(u\) and y ports of the ARMAX Estimator block, respectively. Set the simulation end time to 300 seconds.


3 Run the simulation.
The estimated models display in the MATLAB Command Window every 25 samples.

\section*{See Also Related Commands}
armax
idpoly

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Identifying Input-Output Polynomial Models"
}

\section*{ARX Estimator}

\section*{Purpose}

\section*{Library}

Description

Model
Definition

Estimate parameters of ARX model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The ARX block uses least-squares analysis to estimate the parameters of an ARX model and returns the estimated model as an idpoly object.
For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The ARX model is defined, as follows:
\[
y(t)+a_{1} y(t-1)+\cdots+a_{n_{a}} y\left(t-n_{a}\right)=b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right)+e(t)
\]
where
- \(y(t)\) is the output at time \(t\).
- \(a_{1} \cdots a_{n}\) and \(b_{1} \cdots b_{n}\) are the parameters to be estimated.
- \(n_{a}\) is the number of poles of the system.
- \(n_{b}-1\) is the number of zeros of the system.
- \(n_{k}\) is the number of input samples that occur before the inputs that affect the current output.
- \(y(t-1) \ldots y\left(t-n_{a}\right)\) are the previous outputs on which the current output depends.
- \(u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)\) are the previous inputs on which the current output depends.
- \(e(t)\) is a white-noise disturbance value.

The ARX model can also be written in a compact way using the following notation:
\[
A(q) y(t)=B(q) u\left(t-n_{k}\right)+e(t)
\]
where
\[
\begin{aligned}
& A(q)=1+a_{1} q^{-1}+\cdots+a_{n_{a}} q^{-n_{a}} \\
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1}
\end{aligned}
\]
and \(q^{-1}\) is the backward shift operator, defined by \(q^{-1} u(t)=u(t-1)\).
The following block diagram shows the ARX model structure.


The block accepts two inputs, corresponding to the measured input-output data for estimating the model.

First input: Input signal.
Second input: Output signal.

\section*{ARX Estimator}

\section*{Output}

\section*{Dialog Box}

The ARX Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.


\section*{Orders of model [na nb nk]}

Integers \(n_{a}, n_{b}\), and \(n_{k}\) specify the number of \(A\) and \(B\) model parameters and \(n_{k}\) is input-output delay, respectively.
How often to update model [samples]
Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{ARX Estimator}

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples}

This example shows how you can use the ARX Estimator block in a Simulink model.

1 Specify the data from iddata1.mat for estimation:
```

load iddata1;
IODATA = z1;

```

2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the ARX Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the u and y ports of the ARX Estimator block, respectively.


3 Run the simulation.

\section*{ARX Estimator}

See Also \(\quad\) Related Commands \(\begin{aligned} & \text { arx } \\ & \text { idpoly } \\ & \\ & \\ & \text { Topics in the System Identification Toolbox User's Guide }\end{aligned}\)
"Identifying Input-Output Polynomial Models"

\section*{BJ Estimator}

\section*{Purpose}

\section*{Library}

Description

Estimate parameters of Box-Jenkins model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The BJ Estimator block estimates the parameters of a Box-Jenkins model, and returns the estimated model as an idpoly object.
For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The Box-Jenkins model is defined, as follows:
\[
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+\frac{C(q)}{D(q)} e(t)
\]
where the coefficients of
\[
\begin{aligned}
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& F(q)=1+f_{1} q^{-1}+\cdots+f_{n_{f}} q^{-n_{f}} \\
& C(q)=1+c_{1} q^{-1}+\cdots+c_{n_{c}} q^{-n_{c}} \\
& D(q)=1+d_{1} q^{-1}+\cdots+d_{n_{d}} q^{-n_{d}}
\end{aligned}
\]
are the parameters being estimated, and \(q^{-1}\) is the backward shift operator defined by \(q^{-1} u(t)=u(t-1)\).

The following block diagram shows the Box-Jenkins model structure.

\section*{BJ Estimator}


Input

Output

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.
First input: Input signal.
Second input: Output signal.
The BJ Estimator block outputs a sequence of multiple models (idpoly), estimated at regular intervals during the simulation.
The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.

\section*{Dialog Box}


\section*{Orders of model [nb nc nd nf nk]}

Integers \(n_{b}, n_{c}, n_{d}\), and \(n_{f}\) specify the number of \(B, C, D\), and \(F\) model parameters, respectively.

Integer \(n_{k}\) specifies the input-output delay.

\section*{Calculate after how many points}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of data window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{BJ Estimator}

\section*{Examples This example shows how you can use the BJ Estimator block in a Simulink model.}

1 Specify the data in iddata1.mat for estimation:
```

load iddata1;
IODATA = z1;

```

2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the BJ Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the \(u\) and y ports of the BJ Estimator block, respectively.


3 Run the simulation.
The estimated models appear in the MATLAB Command Window every 25 samples.

\section*{See Also Related Commands}
bj
idpoly

\section*{BJ Estimator}

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"

\section*{Purpose}

\section*{Library}

Description


Export iddata object to MATLAB workspace
System Identification Toolbox
The IDDATA Sink block exports an iddata object to the MATLAB workspace.

\section*{Input}

The first block input is the input of specified iddata object in the MATLAB workspace. Similarly, the second block input is the output of the specified iddata object.

\section*{Output}

None.

\section*{Dialog Box}


\section*{IDDATA Name}

Name of the iddata object in the MATLAB workspace.

\section*{Sample Time (sec.)}

Time interval (in seconds) between successive data samples.

\section*{IDDATA Sink}

\author{
See Also \\ IDDATA Source
}

\section*{Purpose}

Import iddata object from MATLAB workspace

\section*{Library}

Description


Dialog
Box
System Identification Toolbox
The IDDATA Source block imports an iddata object from the MATLAB workspace.

\section*{Input}

None.

\section*{Output}

The first block output is the input signal of the iddata object imported from the MATLAB workspace.
The second block output is the output signal of this iddata object.


\section*{Iddata object}

Name of the iddata object imported from the MATLAB workspace.

The iddata object must contain only one experiment. For a multiple-experiment object, use getexp(data, kexp) to specify the experiment number kexp.

\section*{See Also}

IDDATA Sink

\section*{IDMODEL Model}

\section*{Purpose}

Simulate idmodel object in Simulink software

\section*{Library}

Description


System Identification Toolbox
The IDMODEL block simulates a linear model in the MATLAB workspace.

Note For simulating nonlinear models, use the IDNLGREY, IDNLARX, or IDNLHW Model blocks.

\section*{Input}

Input signal to the model.

\section*{Output}

Simulated output from the model.

\section*{Dialog \\ Box}

\section*{IDMODEL Model}

\section*{idmodel variable}

Name of idmodel variable in the MATLAB workspace, which can be an idpoly, idss, idgrey, idarx or idproc model object that you estimated using System Identification Toolbox software.

This block supports both continuous-time and discrete-time models with or without input-output delays.

\section*{Initial state (state space only)}

Initial state vector.
(Default) 'z' (in quotation marks) specifies zero, which corresponds to a simulation starting from a state of rest.

Enter ' \(m\) ' to use the internal initial states of the model, stored by the idss or idgrey model property XO.

To specify your own initial states, enter one of the following:
- Enter known initial states for a state-space model directly, as a numerical vector.

Note For non-state-space models, the initial conditions are 0.
- Compute the initial states using the findstates (idmodel) command to get the initial state values that produce the best fit between the model output and the measured output signal.

For example, if the data set \(z\) and model \(m\) are already in the MATLAB workspace, you can enter XO, such that:
X0 = findstates(m,z1)

\section*{Add noise}

Select when you need to add noise, as specified by the model property model.NoiseVariance and the matrices or polynomials that determine the color of the additive noise.

\section*{IDMODEL Model}

For continuous-time models, the ideal variance of the noise term at any moment is infinite. In reality, you see a band-limited noise that takes into account the natural time constants of the system. You can interpret the resulting simulated output as filtered using a low-pass filter with a pass-band that does not distort the dynamics from the input.

\section*{Noise seed(s)}
(Use when you select the Add noise check box.)
Enter an integer that specifies a seed that forces the simulation to add the same noise to the output every time you simulate the model. For more information about using seeds with functions that generate random number sequences, see the rand reference page in MATLAB documentation, for example.

\section*{See Also \\ findstates(idmodel) \\ idmodel}

\section*{IDNLARX Model}

\section*{Purpose}

Simulate nonlinear ARX model in Simulink software
Library
System Identification Toolbox
Description


Input
Output
Dialog Box

Input signal to the model.
Simulated output from the model.


\section*{Model}

Name of idnlarx variable in the MATLAB workspace.

\section*{IDNLARX Model}

\section*{Initial conditions}

Specifies the initial states as one of the following:
- Input and output values: Specify the input and output levels, as follows:

\section*{- Input level}

If known, enter a vector of length equal to the number of model inputs. If you enter a scalar, it is the signal value for all inputs.

\section*{- Output level}

If known, enter a vector of length equal to the number of model's outputs. If you enter a scalar, it is the signal value for all outputs.
- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Vector of state values field.

If you do not know the initial states, you can estimate these states, as follows:
- To simulate around a given input level when you do not know the corresponding output level, you can estimate the equilibrium state values using the findop(idnlarx) command.

For example, to simulate a model M about a steady-state point where the input is 1 and the output is unknown, you can enter XO, such that:
```

XO = findop(M,'steady',1,NaN)

```
- To estimate the initial states that provide a best fit between measured data and the simulated response of the model for the same input, use the findstates(idnlarx) command.

\section*{IDNLARX Model}

For example, to compute initial states such that the response of the model \(M\) matches the output data in the data set \(z\), you can enter XO, such that:
```

XO = findstates(M,z,[],'sim')

```
- To continue a simulation from a previous run, use the simulated input-output values from the previous simulation to compute the initial states XO for the current simulation.

For example, suppose that firstSimData is a variable that stores the input and output values from a previous simulation. For a model M, you can enter XO, such that:
```

XO = data2state(M,firstSimData)

```

\section*{Examples Example 1}

In this example, you estimate a nonlinear ARX model from data and compare the model output of the model to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.
```

z = iddata(y,u,0.2,'Name','Two tank system');

```
z1 = z(1:1000);

3 Estimate a nonlinear ARX model.
```

mw1 = nlarx(z1,[5 1 3],wavenet('NumberOfUnits',8));

```

4 Build the following Simulink model using the IDDATA Source, IDNLARX Model, and Scope blocks.


5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:

\section*{IDDATA Object: z1}

\section*{Click OK.}

6 Double-click the IDNLARX Model block and enter the following into the block parameter dialog box:
- Model: mw1
- Initial conditions: Select Input and output values and accept the default values.

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale command to scale the axes.

\section*{Example 2}

In this example, you reduce the difference between the measured and simulated responses. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z1.

\section*{IDNLARX Model}
```

x0 = findstates(mw1,z1,[],'simulation');

```

2 Set the Initial Conditions to State Values. Enter x0 in the corresponding field.

3 Run the simulation.

\section*{See Also Related Commands}
```

findop(idnlarx)
findstates(idnlarx)
idnlarx

```

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Identifying Nonlinear ARX Models"
}

\section*{Purpose}

\section*{Library}

\section*{Description}


Simulates systems of nonlinear grey-box (idnlgrey) models.

\section*{Input}

Input signal to the model.

\section*{Output}

Output signal from the model.

\section*{Dialog \\ Box}

System Identification Toolbox
Simulate nonlinear grey-box model in Simulink software

\section*{IDNLGREY model}

Name of idnlgrey variable in the MATLAB workspace.

\section*{Initial state}

Specify the initial states as one of the following:

\section*{IDNLGREY Model}
- 'z': Specifies zero, which corresponds to a system starting from rest.
- 'm': Specifies the internal initial states of the model.
- Vector of size equal to the number of states in the idnlgrey object.
- An initial state structure array. For information about creating this structure, type help idnlgrey/sim in the MATLAB Command Window.

\section*{See Also Related Commands}
idnlgrey

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Estimating Nonlinear Grey-Box Models"
}

\section*{IDNLHW Model}

\section*{Purpose}

Simulate Hammerstein-Wiener model in Simulink software

\section*{Library}

Description


\section*{Input}

Output
Dialog Box

Input signal to the model.
Simulated output from the model.


\section*{Model}

Name of the idnlhw variable in the MATLAB workspace.

\section*{Initial conditions}

Specifies the initial states as one of the following:

\section*{IDNLHW Model}
- Zero: Specifies zero, which corresponds to a simulation starting from a state of rest.
- State values: When selected, you must specify a vector of length equal to the number of states in the model in the Specify a vector of state values field.
If you do not know the initial states, you can estimate these states, as follows:
- To simulate around a given input level when you do not know the corresponding steady-state output level, you can estimate the equilibrium state values using the findop(idnlhw) command.

For example, to simulate a model \(M\) about a steady-state point where the input is 1 and the output is unknown, you can enter XO, such that:
\[
\text { XO = findop(M,'steady', } 1, \mathrm{NaN})
\]
- To estimate the initial states such that the simulated response of the model matches specified output data for the same input, use the findstates(idnlhw).

For example, for the data set \(z\) and model \(m\), you can enter XO, such that:
```

XO = findstates(m,z)

```

\section*{Examples Example 1}

In this example, you estimate a Hammerstein-Wiener model from data and compare the model output of the model to the measured output of the system.

1 Load the sample data.
load twotankdata
2 Create a data object from sample data.
```

z = iddata(y,u,0.2, ...
'Name','Two tank system',...
'Tstart',0);

```

3 Estimate a Hammerstein-Wiener model.
```

mhw1 = nlhw(z,[1 5 3],pwlinear,pwlinear);

```

4 Build the following Simulink model using the IDDATA Source, IDNLHW Model, and Scope blocks.


5 Double-click the IDDATA Source block and enter the following into the block parameter dialog box:
- IDDATA Object: z

Click OK.
6 Double-click the IDNLHW Model block and enter the following into the block parameter dialog box:
- Model: mhw1
- Initial Conditions: Zero

7 Run the simulation.
Click the Scope block to view the difference between the measured output and the model output. Use the Autoscale toolbar button to scale the axes.

\section*{IDNLHW Model}

\section*{Example 2}

In this example, you reduce the difference between the measured and simulated responses using suitable initial state values. To achieve this, you use the findstates command to estimate an initial state vector for the model from the data.

1 Estimate initial states from the data z:
x0 = findstates(mhw1,z,[],'maxiter',50);

2 Set the Initial Conditions to State Values. Enter x0 in the corresponding field.

3 Run the simulation.

\section*{See Also \\ Related Commands}
```

findop(idnlhw)
findstates(idnlhw)
idnlhw

```

\section*{Topics in the System Identification Toolbox User's Guide}

\author{
"Identifying Hammerstein-Wiener Models"
}

\section*{OE Estimator}

\section*{Purpose}

\section*{Library}

Description


\section*{Model Definition}

Estimate parameters of Output-Error model from SISO data in Simulink software returning idpoly object

System Identification Toolbox
The OE block estimates the parameters of an Output-Error model, and returns the estimated model as an idpoly object.

For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The output-error model is defined, as follows:
\[
\begin{aligned}
& w(t)+f_{1} w(t-1)+\cdots+f_{n_{f}} w\left(t-n_{f}\right)=b_{1} u(t-1)+\cdots+b_{n_{b}} u\left(t-n_{k}-n_{b}+1\right) \\
& y(t)=w(t)+e(t)
\end{aligned}
\]
where
- \(w\) is the undisturbed output.
- \(y(t)\) is the output at time \(t\).
- \(f_{1} \cdots f_{n_{f}}\) and \(b_{1} \cdots b_{n_{b}}\) are the parameters to be estimated.
- \(n_{f}\) is the number of poles of the transfer function from the input to the undisturbed output.
- \(n_{b}+1\) is the number of zeros of the transfer function from the input to the undisturbed output.
- \(n_{k}\) is the number of input samples that occur before the inputs that affect the current output.
- \(u\left(t-n_{k}\right) \ldots u\left(t-n_{k}-n_{b}+1\right)\) are the previous inputs on which the current output depends.
- \(e(t)\) is a white-noise disturbance value.

The OE model can also be written in a compact way using the following notation:
\[
y(t)=\frac{B(q)}{F(q)} u\left(t-n_{k}\right)+e(t)
\]
where
\[
\begin{aligned}
& B(q)=b_{1}+b_{2} q^{-1}+\cdots+b_{n_{b}} q^{-n_{b}+1} \\
& F(q)=1+f_{1} q^{-1}+\cdots f_{n_{f}} q^{-n_{f}}
\end{aligned}
\]
and \(q^{-1}\) is the backward shift operator, defined by \(q^{-1} u(t)=u(t-1)\).
The following block diagram shows the ARX model structure.


Input
The block accepts two inputs, corresponding to the measured input-output data for estimating the model.
First input: Input signal.
Second input: Output signal.

\section*{OE Estimator}

\section*{Output}

\section*{Dialog \\ Box}

The OE Estimator block outputs a sequence of multiple models (idpoly), estimated at regular intervals during the simulation.

The Length of Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.


\section*{Orders of model [ \(\mathbf{n b} \mathbf{n f} \mathbf{n k}\) ]}

Integers \(n_{b}, n_{f}\), and \(n_{k}\) specify the number of \(B\) and \(F\) model parameters and \(n_{k}\) is the input-output delay, respectively.

\section*{How often to update model}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples}

This example shows how you can use the OE Estimator block in a Simulink model.

1 Specify the data from iddata1.mat for estimation:
load iddata1;
IODATA = z1;

2 Create a new Simulink model, as follows:
- Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.
- Add the OE Estimator block to the model. Set sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.
- Connect the Input and Output ports of the IDDATA Source block to the \(u\) and \(y\) ports of the OE Estimator block, respectively.


3 Run the simulation.
The estimated models appear in the MATLAB Command Window every 25 samples.

\section*{OE Estimator}

\section*{See Also Related Commands}
oe
idpoly

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"

\section*{PEM Estimator}

\section*{Purpose}

\section*{Library}

Description

Estimate generic input-output polynomial model parameters from SISO data using iterative prediction-error minimization method

System Identification Toolbox
The PEM Estimator block estimates linear input-output polynomial models in Simulink software.

For information about the default algorithm settings used for model estimation, see the Algorithm Properties reference page.

Each estimation generates a figure with the following plots:
- Actual (measured) output versus the simulated or predicted model output.
- Error in simulated model, which is the difference between the measured output and the model output.

The input-output polynomial structure is defined, as follows:
\[
A y(t)=\frac{B}{F} u(t-N k)+\frac{C}{D} e(t)
\]
where
- \(y(t)\) is the output at time \(t\).
- \(A, B, F, C\), and \(D\) are the parameters \(a_{1} \ldots a_{n a}, b_{1} \cdots b_{n_{b}}, f_{1} \cdots f_{n_{f}}\), \(c_{1} \cdots c_{n_{c}}\) and \(d_{1} \cdots d_{n_{d}}\) to be estimated.
- \(e(t)\) is a white-noise disturbance.

\section*{Input}

The block accepts two inputs, corresponding to the measured input-output data for estimating the model.
First input: Input signal.

\section*{PEM Estimator}

Second input: Output signal.

\section*{Output}

Dialog Box

The PEM Estimator block outputs a sequence of multiple models (idpoly objects), estimated at regular intervals during the simulation.

The Data window field in the block parameter dialog box specifies the number of data samples to use for estimation, as the simulation progresses.

The output format depends on whether you specify the Model Name in the block parameter dialog box.


\section*{PEM Estimator}

\section*{Orders of model [na nb nc nd nf nk]}

Integers \(n_{a}, n_{b}, n_{c}, n_{d}, n_{f}\), and \(n_{k}\), specify the number of \(A, B, C, D\), and \(F\) model parameters \(n_{k}\) is the input-output delay, respectively.

\section*{Calculate after how many points}

Number of input data samples that specify the interval after which to estimate a new model.

Default: 25

\section*{Sample time}

Sampling time for the model.

Note If you use a fixed step-size solver, the fixed step size must be consistent with this sample time.

\section*{Length of Data Window}

Number of past data samples used to estimate each model. A longer data window should be used for higher-order models. Too small a value might cause poor estimation results, and too large a value leads to slower computation.

Default: 200.

\section*{Model Name}

Name of the model.
Whether you specify the model name determines the output format of the resulting models, as follows:
- If you do not specify a model name, the estimated models display in the MATLAB Command Window in a transfer-function format.
- If you specify a model name, the resulting models are output to the MATLAB workspace as a cell array.

\section*{PEM Estimator}

\section*{Simulation/Prediction}

Simulation: The algorithm uses only measured input data to simulate the response of the model.

Prediction: Specifies the forward-prediction horizon for computing the response K steps in the future, where K is 1,5 , or 10 .

\section*{Examples}

This example shows how you can use the PEM Estimator block in a Simulink model.

1 Specify data in iddata1.mat for estimation:
```

load iddata1;
IODATA = z1;

```

2 Create a new Simulink model, as follows.
Add the IDDATA Source block and specify IODATA in the Iddata object field of the IDDATA Source block parameters dialog box.

Add the PEM Estimator block to the model. Set the sample time in the block to 0.1 seconds and the simulation end time to 30 seconds.

Connect the Input and Output ports of the IDDATA Source block to the \(u\) and \(y\) ports of the PEM Estimator block, respectively.


3 Run the simulation.

\title{
PEM Estimator
}

The estimated models display in the MATLAB Command Window every 25 samples.

\section*{See Also \\ Relared Commands}
idpoly
pem

\section*{Topics in the System Identification Toolbox User's Guide}
"Identifying Input-Output Polynomial Models"

\section*{PEM Estimator}

\section*{A}
adaptive noise canceling 2-362
advanced algorithm options 2-17

\section*{E}
estimating models
Focus 2-11

\section*{F}
fixed parameter 2-14
Focus 2-11
frequency response function \(2-419\)

\section*{G}

Gauss-Newton direction 2-16

\section*{L}

Levenberg-Marquardt 2-16

\section*{LimitError 2-15}

\section*{M}

MaxIter 2-15
MaxSize 2-13

\section*{R}
robust criterion
LimitError 2-15

\section*{S}

SearchMethod 2-16

\section*{T}

Tolerance 2-15```

